40 research outputs found

    NAPO as a novel marker for apoptosis

    Get PDF
    Apoptosis or programmed cell death plays a pivotal role in embryonic development and maintenance of homeostasis. It is also involved in the etiology of pathophysiological conditions such as cancer, neurodegenerative, autoimmune, infectious, and heart diseases. Consequently, the study of apoptosis is now at center of both basic and clinical research applications. Therefore, sensitive and simple apoptosis detection techniques are required. Here we describe a monoclonal antibody–defined novel antigen, namely NAPO (negative in apoptosis), which is specifically lost during apoptosis. The anti-NAPO antibody recognizes two nuclear polypeptides of 60 and 70 kD. The antigen is maintained in quiescent and senescent cells, as well as in different phases of the cell cycle, including mitosis. Thus, immunodetection of NAPO antigen provides a specific, sensitive, and easy method for differential identification of apoptotic and nonapoptotic cells

    MicroRNA Control of Invasion and Metastasis Pathways

    Get PDF
    Despite recent advances, cancer remains a leading cause of death worldwide. In developed countries, the incidence of colorectal and breast cancer has been stable, but no improvement in prognosis has been observed if the patient presents with metastases at diagnosis. This fact highlights the importance of therapeutic approaches targeting cellular invasion and metastasis programs as the next step in cancer treatment. During carcinoma progression a process called epithelial–mesenchymal transition (EMT) results in enhanced invasion and motility which is directly linked with loss of epithelial polarity and epithelial junctions, migration permissive cytoskeleton alterations, and the acquisition of mesenchymal properties. The recent discovery of microRNAs (miRNAs) controlling key cellular pathways has opened a new era in understanding how EMT pathways are modulated. In this review, we classify EMT regulating proteins according to their cellular localization (membrane, cytoplasmic, and nuclear), and summarize the current knowledge on how they are controlled by miRNAs and propose potential miRNAs for the transcripts that may control their expression

    Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice

    Full text link
    Comprehensive development is critical for gut macrophages being essential for the intestinal immune system. However, the underlying mechanisms of macrophage development in the colon remain elusive. To investigate the function of branched-chain amino acids in the development of gut macrophages, an inducible knock-out mouse model for the branched-chain amino acid transporter CD98hc in CX3CR1+ macrophages was generated. The relatively selective deletion of CD98hc in macrophage populations leads to attenuated severity of chemically-induced colitis that we assessed by clinical, endoscopic, and histological scoring. Single-cell RNA sequencing of colonic lamina propria macrophages revealed that conditional deletion of CD98hc alters the "monocyte waterfall"-development to MHC II+ macrophages. The change in the macrophage development after deletion of CD98hc is associated with increased apoptotic gene expression. Our results show that CD98hc deletion changes the development of colonic macrophages

    ATM Regulates Differentiation of Myofibroblastic Cancer-Associated Fibroblasts and Can Be Targeted to Overcome Immunotherapy Resistance

    Get PDF
    Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance.SignificanceATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Acquired expression of transcriptionally active p73 in hepatocellular carcinoma cells

    Get PDF
    Ankara : The Department of Molecular Biology and Genetics and the Institute of Engineering and Science of Bilkent Univ., 2002.Thesis (Ph. D.) -- Bilkent University, 2002.Includes bibliographical references leaves 114-127.P53 gene is the most common mutated tumor suppressor gene during tumorigenesis. From its description till 1997, p53 gene was thought to stand alone in the human genome. In 1997, p73 gene and in 1998, p63 gene was identified which are encoding functional homologues of p53 protein. Unlike p53, the knock out mice for p73 and p63 genes did not yield a tumor prone phenotype and the mutation frequency of these genes is very low compared to p53 gene. There is also extensive alternative splicing and changes in the expression pattern of p73 and p63, unlike p53. Thus the new p53 homologues were considered as non-classical and non-Knudson type tumor suppressor genes. A codon specific, aflatoxin ingestion related p53 mutation was shown to be important in the ethiopathology of HCC so loss of p53 function is a major factor during HCC development. The rate of p53 functional inactivation was determined by lots of studies in HCC but the knowledge for new p53 homologues is scarce. We aimed to define the probable function of the new p53 homologue, p73 in HCC development. For this purpose, we have analyzed the 3’ alternative splicing and expression pattern of p73 in a series of HCC derived cell lines. Our results showed the alteration of splicing and expression in HCC cell lines compared to normal liver. After the completion of human genome project, the contig harboring the p73 gene was entered to the public database. With the hints of the presence of an alternative promoter in the p63 gene and the description of the alternative promoter in mouse p73 gene, we have made an in silico analysis to identify the probable promoter and exon within p73 gene. Our studies revealed the in vivo description of a new human p73 encoded transcript. The proposed protein product of the transcript was lacking the transactivation domain so it was named as Dominant Negative p73 (DN-p73) and the former p73 was renamed as Transactivating p73 (TA-p73). Since the promoters of these two transcripts are different and probably under the regulation of different transcription factors, we studied the expression pattern of them by semi quantitative RT-PCR method. We have shown the presence of only DN-p73 in normal in normal liver. HCC derived cell lines and primary HCC tumors also express DN-p73 together with the acquired expression of TA-p73 in most of the cell lines and some of the primary HCC tumors. The promoter of TA-p73 was shown contain E2F1 transcription factor binding sites. The Retinobastoma protein (pRb) is the most potent inhibitor of the E2F1 transcription factor and the dysrĂ©gulation of the Rb pathway components is a common event in HCC development (Rb gene mutations and proteolytic dysrĂ©gulation of pRb and mutational and epigenetic inactivation of pi6). We have shown the expression of TA-p73 in some of the HCC derived cell lines and primary HCC tumors so the acquired expression of TA-p73 in HCC cells might be the indicator and the effect of of Rb pathway dysrĂ©gulation. We tested this hypothesis by analyzing the expression of pRb and pi6, together with the endogenous E2F1 transcription factor targets such as cyclin E, pi4'^’^ and TA-p73. Our results showed a 75% inactivation of Rb pathway components and a partial correlation of TA-p73 expression in HCC cells. The acquired expression of TA-p73 in HCC cells is unfavorable during tumorigenesis since TA-p73 mimics the pro- apoptotic and cell cycle regulatory, function of wild type p53. Mutant p53 proteins were shown to inhibit the pro-apoptotic fliction of wild-type p53 and TA-p73. We have analyzed the p53 protein status of 15 HCC derived cell lines and defined the presence of mutant p53 or no functional p53 protein in 87% of the HCC derived cell lines. As a summary, we have identified the human homologue of mouse DN-p73 and defined the 3’ alternative splicing and 5’ differential promoter initiation products of p73 gene encoded products in normal liver versus a series of HCC derived cell lines and primary tumors. Moreover we have correlated the expression of TA-p73 with Rb pathway inactivation and expression of mutant p53 proteins.Sayan, A EmrePh.D
    corecore