299 research outputs found
Variability and quasi-decadal changes in the methane budget over the period 2000â2012
Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000â2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches
Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning
In this paper, we analyze tropospheric O_3 together with HNO_3 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) program, combining observations and model results. Aircraft observations from the NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and NOAA ARCPAC (Aerosol, Radiation and Cloud Processes affecting Arctic Climate) campaigns during spring and summer of 2008 are used together with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) to assist in the interpretation of the observations in terms of the source attribution and transport of O_3 and HNO_3 into the Arctic (north of 60° N). The MOZART-4 simulations reproduce the aircraft observations generally well (within 15%), but some discrepancies in the model are identified and discussed. The observed correlation of O_3 with HNO_3 is exploited to evaluate the MOZART-4 model performance for different air mass types (fresh plumes, free troposphere and stratospheric-contaminated air masses).
Based on model simulations of O_3 and HNO_3 tagged by source type and region, we find that the anthropogenic pollution from the Northern Hemisphere is the dominant source of O3 and HNO3 in the Arctic at pressures greater than 400 hPa, and that the stratospheric influence is the principal contribution at pressures less 400 hPa. During the summer, intense Russian fire emissions contribute some amount to the tropospheric columns of both gases over the American sector of the Arctic. North American fire emissions (California and Canada) also show an important impact on tropospheric ozone in the Arctic boundary layer.
Additional analysis of tropospheric O_3 measurements from ground-based FTIR and from the IASI satellite sounder made at the Eureka (Canada) and Thule (Greenland) polar sites during POLARCAT has been performed using the tagged contributions. It demonstrates the capability of these instruments for observing pollution at northern high latitudes. Differences between contributions from the sources to the tropospheric columns as measured by FTIR and IASI are discussed in terms of vertical sensitivity associated with these instruments. The first analysis of O_3 tropospheric columns observed by the IASI satellite instrument over the Arctic is also provided. Despite its limited vertical sensitivity in the lowermost atmospheric layers, we demonstrate that IASI is capable of detecting low-altitude pollution transported into the Arctic with some limitations
U.S. CH4 emissions from oil and gas production: Have recent large increases been detected?
Recent studies have proposed significant increases in CH4 emissions possibly from oil and gas (O&G) production, especially for the U.S. where O&G production has reached historically high levels over the past decade. In this study, we show that an ensemble of time-dependent atmospheric inversions constrained by calibrated atmospheric observations of surface CH4 mole fraction, with some including space-based retrievals of column average CH4 mole fractions, suggests that North American CH4 emissions have been flat over years spanning 2000 through 2012. Estimates of emission trends using zonal gradients of column average CH4 calculated relative to an upstream background are not easy to make due to atmospheric variability, relative insensitivity of column average CH4 to surface emissions at regional scales, and fast zonal synoptic transport. In addition, any trends in continental enhancements of column average CH4 are sensitive to how the upstream background is chosen, and model simulations imply that short-term (4 years or less) trends in column average CH4 horizontal gradients of up to 1.5 ppb/yr can occur just from interannual transport variability acting on a strong latitudinal CH4 gradient. Finally, trends in spatial gradients calculated from space-based column average CH4 can be significantly biased (>2-3 ppb/yr) due to the nonuniform and seasonally varying temporal coverage of satellite retrievals.CC-BY 4.
Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling
Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases. One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high-frequency data sampled at high-variability stations. Others implications are discussed at the end of the paper
Technical Note: Ozonesonde climatology between 1995 and 2011: description, evaluation and applications
An ozone climatology based on ozonesonde measurements taken over the last 17 yr has been constructed for model evaluation and comparisons to other observations. Vertical ozone profiles for 42 stations around the globe have been compiled for the period 1995â2011, in pressure and tropopause-referenced altitudes. For each profile, the mean, standard deviation, median, the half-width are provided, as well as information about interannual variability. Regional aggregates are formed in combining stations with similar ozone characteristics. The Hellinger distance is introduced as a new diagnostic to identify stations that describe similar shapes of ozone probability distribution functions (PDFs). In this way, 12 regions were selected covering at least 2 stations and the variability among those stations is discussed. Significant variability with longitude of ozone distributions in the troposphere and lower stratosphere in the northern mid- and high latitudes is found. The representativeness of regional aggregates is discussed for high northern latitudes, Western Europe, Eastern US, and Japan, using independent observations from surface stations and MOZAIC aircraft data. Good agreement exists between ozonesondes and aircraft observations in the mid-troposphere and between ozonesondes and surface observations for Western Europe. For Eastern US and high northern latitudes, surface ozone values from ozonesondes are biased 10 ppb high compared to independent measurements. An application of the climatology is presented using the NCAR CAM-Chem model. The climatology allows evaluation of the model performance regarding ozone averages, seasonality, interannual variability, and the shape of ozone distributions. The new assessment of the key features of ozone distributions gives deeper insights into the performance of models
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000â2016 period
The modeling study presented here aims to estimate
how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios
to force the offline atmospheric chemistry transport model
LMDz (Laboratoire de Meteorologie Dynamique) with a
standard CH4 emission scenario over the period 2000â2016.
The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000â2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3.
The inter-model differences in tropospheric OH burden and
vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1â0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960â2000. Once
ingested into the LMDz model, these OH changes translated
into a 5 to 15 ppbv reduction in the CH4 mixing ratio
in 2010, which represents 7%â20% of the model-simulated
CH4 increase due to surface emissions. Between 2010 and
2016, the ensemble of simulations showed that OH changes
could lead to a CH4 mixing ratio uncertainty of > 30 ppbv.
Over the full 2000â2016 time period, using a common stateof-
the-art but nonoptimized emission scenario, the impact
of [OH] changes tested here can explain up to 54% of the
gap between model simulations and observations. This result
emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions
Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements
A more accurate characterization of the sources and sinks of methane (CH4) and carbon dioxide (CO2) in the vulnerable Arctic environment is required to better predict climate change. A large-scale aircraft campaign took place in September 2020 focusing on the Siberian Arctic coast. CH4 and CO2 were measured in situ during the campaign and form the core of this study. Measured ozone (O3) and carbon monoxide (CO) are used here as tracers. Median CH4 mixing ratios are fairly higher than the monthly mean hemispheric reference (Mauna Loa, Hawaii, US) with 1890–1969 ppb vs 1887 ppb respectively, while CO2 mixing ratios from all flights are lower (408.09–411.50 ppm vs 411.52 ppm). We also report on three case studies. Our analysis suggests that during the campaign the European part of Russia’s Arctic and Western Siberia were subject to long-range transport of polluted air masses, while the East was mainly under the influence of local emissions of greenhouse gases. The relative contributions of the main anthropogenic and natural sources of CH4 are simulated using the Lagrangian model FLEXPART in order to identify dominant sources in the boundary layer and in the free troposphere. In western terrestrial flights, air masses composition is influenced by emissions from wetlands and anthropogenic activities (waste management, fossil fuel industry and to a lesser extent the agricultural sector), while in the East, emissions are dominated by freshwaters, wetlands, and the oceans, with a likely contribution from anthropogenic sources related to fossil fuels. Our results highlight the importance of the contributions from freshwater and oceans emissions. Considering the large uncertainties associated to them, our study suggests that the emissions from these aquatic sources should receive more attention in Siberia.</p
Recommended from our members
Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets
The hydroxyl radical (OH), which is the dominant sink of methane (CH4), plays a key role in closing the global methane budget. Current top-down estimates of the global and regional CH4 budget using 3D models usually apply prescribed OH fields and attribute modelâobservation mismatches almost exclusively to CH4 emissions, leaving the uncertainties due to prescribed OH fields less quantified. Here, using a variational Bayesian inversion framework and the 3D chemical transport model LMDz, combined with 10 different OH fields derived from chemistryâclimate models (ChemistryâClimate Model Initiative, or CCMI, experiment), we evaluate the influence of OH burden, spatial distribution, and temporal variations on the global and regional CH4 budget. The global tropospheric mean CH4-reaction-weighted [OH] ([OH]GMâCH4) ranges 10.3â16.3Ă105âmolecâcmâ3 across 10 OH fields during the early 2000s, resulting in inversion-based global CH4 emissions between 518 and 757ââTgâyrâ1. The uncertainties in CH4 inversions induced by the different OH fields are similar to the CH4 emission range estimated by previous bottom-up syntheses and larger than the range reported by the top-down studies. The uncertainties in emissions induced by OH are largest over South America, corresponding to large inter-model differences of [OH] in this region. From the early to the late 2000s, the optimized CH4 emissions increased by 22±6ââTgâyrâ1 (17â30ââTgâyrâ1), of which âŒ25ââ% (on average) offsets the 0.7ââ% (on average) increase in OH burden. If the CCMI models represent the OH trend properly over the 2000s, our results show that a higher increasing trend of CH4 emissions is needed to match the CH4 observations compared to the CH4 emission trend derived using constant OH. This study strengthens the importance of reaching a better representation of OH burden and of OH spatial and temporal distributions to reduce the uncertainties in the global and regional CH4 budgets
On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2
The Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries. Moreover, in many countries the capability to systematically produce detailed and annually updated GHG inventories is still lacking. On the other hand, spatially-explicit datasets quantifying sources and sinks of carbon dioxide, methane and nitrous oxide emissions from Earth Observations (EO) are still limited by many sources of uncertainty. While national GHG inventories follow diverse methodologies depending on the availability of activity data in the different countries, the proposed comparison with EO-based estimates can help improve our understanding of the comparability of the estimates published by the different countries. Indeed, EO networks and satellite platforms have seen a massive expansion in the past decade, now covering a wide range of essential climate variables and offering high potential to improve the quantification of global and regional GHG budgets and advance process understanding. Yet, there is no EO data that quantifies greenhouse gas fluxes directly, rather there are observations of variables or proxies that can be transformed into fluxes using models. Here, we report results and lessons from the ESA-CCI RECCAP2 project, whose goal was to engage with National Inventory Agencies to improve understanding about the methods used by each community to estimate sources and sinks of GHGs and to evaluate the potential for satellite and in-situ EO to improve national GHG estimates. Based on this dialogue and recent studies, we discuss the potential of EO approaches to provide estimates of GHG budgets that can be compared with those of national GHG inventories. We outline a roadmap for implementation of an EO carbon-monitoring program that can contribute to the Paris Agreement
- âŠ