70 research outputs found

    Evaluation of the DiaSorin LIAISON SARS-CoV-2 antigen assay on nasopharyngeal swabs in two different SARS-CoV-2 pandemic waves in Switzerland: The impact of the Omicron variant on its performance.

    Get PDF
    Background SARS-CoV-2 antigen tests reliably detect individuals with high viral loads and provide an efficient diagnostic tool to manage the current SARS-CoV-2 pandemic. However, mutations in SARS-CoV-2 variants of concerns that appeared after validation of most antigen tests might impact their diagnostic performance. Objectives To assess the impact of the Omicron variant on the performance of the DiaSorin LIAISON SARS-CoV-2 antigen test, we evaluated its sensitivity and specificity on nasopharyngeal swabs (NPS) compared to rRT-PCR in the second and the Omicron pandemic wave in Switzerland. Study design A random selection of NPS from patients undergoing SARS-CoV-2 diagnostics by rRT-PCR were collected during the second and the Omicron pandemic wave and further analyzed by the LIAISON antigen test. Sensitivity and specificity compared to rRT-PCR were calculated. Results Test performance did not change in the two investigated periods. The overall sensitivity of 75.8% in the second and 76.5% in the Omicron wave increased to 87.1% and 88.4%, excluding samples with rRT-PCR Ct-value >30. By lowering the cut-off from 200 TCID50/ml to 62 TCID50/ml to discriminate between negative and positive samples using a ROC-curve, the sensitivity resulted in 88.8% for the second and 93.3% for the Omicron pandemic wave. The specificity of the LIAISON antigen test was 100% in both collectives. Conclusion Omicron variant does not seem to affect the performance of the LIAISON antigen test. The WHO recommended sensitivity of ≥80% for antigen testing was fulfilled during both pandemic periods in samples with Ct-value <30 or by optimizing the assay cut-off

    Reverted exhaustion phenotype of circulating lymphocytes as immune correlate of anti-PD1 first-line treatment in Hodgkin lymphoma

    Get PDF
    While classical Hodgkin lymphoma (HL) is highly susceptible to anti-programmed death protein 1 (PD1) antibodies, the exact modes of action remain controversial. To elucidate the circulating lymphocyte phenotype and systemic effects during anti-PD1 1st-line HL treatment we applied multicolor flow cytometry, FluoroSpot and NanoString to sequential samples of 81 HL patients from the NIVAHL trial (NCT03004833) compared to healthy controls. HL patients showed a decreased CD4 T-cell fraction, a higher percentage of effector-memory T cells and higher expression of activation markers at baseline. Strikingly, and in contrast to solid cancers, expression for 10 out of 16 analyzed co-inhibitory molecules on T cells (e.g., PD1, LAG3, Tim3) was higher in HL. Overall, we observed a sustained decrease of the exhausted T-cell phenotype during anti-PD1 treatment. FluoroSpot of 42.3% of patients revealed T-cell responses against ≥1 of five analyzed tumor-associated antigens. Importantly, these responses were more frequently observed in samples from patients with early excellent response to anti-PD1 therapy. In summary, an initially exhausted lymphocyte phenotype rapidly reverted during anti-PD1 1st-line treatment. The frequently observed IFN-y responses against shared tumor-associated antigens indicate T-cell-mediated cytotoxicity and could represent an important resource for immune monitoring and cellular therapy of HL

    TgICMAP1 Is a Novel Microtubule Binding Protein in Toxoplasma gondii

    Get PDF
    The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction

    Applications of Wine Pomace in the Food Industry: Approaches and Functions

    Get PDF
    Winemaking generates large amounts ofwine pomace, also called grape pomace. This by-product has attracted the attention of food scientists and the food industry, due to its high content in nutrients and bioactive compounds. This review mainly focuses on the different published approaches to the use of wine pomace and its functions in the food industry. Traditionally, wine pomace has been used to obtain wine alcohol, food colorings, and grape seed oil. More recently, research has focused in the production of other value-added products, such as extracts of bioactive compounds, mainly phenols, recovery of tartaric acid, and the making of flours. The most common functions associated with wine pomace products are their use as antioxidants, followed by their use as fortifying, coloring, and antimicrobial agents. These products have mainly been applied to the preparation of meat and fish products and to, a lesser extent, cereal products.Autonomous Government of Castilla y LeĂłn, Spain, through the research project BU282U13

    Balancing risk and benefit in early-stage classical Hodgkin lymphoma

    No full text
    With defined chemotherapy and radiotherapy (RT) and risk-adapted treatment, early-stage classical Hodgkin lymphoma (HL) has become curable in a majority of patients. Hence, a major current goal is to reduce treatment-related toxicity while maintaining long-term disease control. Patients with early-stage favorable disease (ie, limited stage without risk factors [RFs]) are frequently treated with 2 cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine (2xABVD) followed by 20-Gy involved-field or involved-site RT (IF/ISRT). In patients with early-stage unfavorable disease (ie, limited stage with RFs), 4 cycles of chemotherapy are usually consolidated with 30-Gy IF/ISRT. Compared with 4xABVD, 2 cycles of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (2xBEACOPP(escalated)) followed by 2xABVD improved 5-year progression-free survival (PFS), with similar 5-year overall survival. Recently, treatment strategies based on [F-18] fluorodeoxyglucose positron emission tomography (PET) response were evaluated. In early-stage unfavorable HL, a majority of patients achieved a negative interim PET after 2xABVD and an excellent outcome after 4xABVD, whereas in those with a positive interim PET, 2xBEACOPP(escalated) improved 5-year PFS. Furthermore, a PET-guided RT approach was evaluated to decrease long-term toxicity. Although both the RAPID and H10 trials reported poorer disease control without RT, PET-guided omission of RT can constitute a valid therapeutic option in patients with an increased risk of RT-associated toxicity (eg, because of sex, age, or disease localization). Implementation of drugs such as the anti-CD30 antibody-drug conjugate brentuximab vedotin or the anti-programmed death 1 antibodies nivolumab or pembrolizumab might allow further reduction of overall mortality and improve quality of life in affected patients

    Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    No full text
    Disease-specific induced pluripotent stem (iPS) cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3)-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening

    2009

    No full text
    • …
    corecore