17,005 research outputs found

    Membrane Fission: A Computational Complexity Perspective

    Get PDF
    Membrane fission is a process by which a biological membrane is split into two new ones in the manner that the content of the initial membrane is separated and distributed between the new membranes. Inspired by this biological phenomenon, membrane separation rules were considered in membrane computing. In this work, we investigate cell-like P systems with symport/antiport rules and membrane separation rules from a computational complexity perspective. Specifically, we establish a limit on the efficiency of such P systems which use communication rules of length at most two, and we prove the computational efficiency of this kind of models when using communication rules of length at most three. Hence, a sharp borderline between tractability and NP–hardness is provided in terms of the length of communication rules.Ministerio de Economía y Competitividad TIN2012-3743

    Motion-Based Design of Passive Damping Devices to Mitigate Wind-Induced Vibrations in Stay Cables

    Get PDF
    Wind action can induce large amplitude vibrations in the stay cables of bridges. To reduce the vibration level of these structural elements, different types of passive damping devices are usually installed. In this paper, a motion-based design method is proposed and implemented in order to achieve the optimum design of different passive damping devices for stay cables under wind action. According to this method, the design problem is transformed into an optimization problem. Thus, its main aim is to minimize the different terms of a multi-objective function, considering as design variables the characteristic parameters of each considered passive damping device. The multi-objective function is defined in terms of the scaled characteristic parameters, one single-function for each parameter, and an additional function that checks the compliance of the considered design criterion. Genetic algorithms are considered as a global optimization method. Three passive damping devices have been studied herein: viscous, elastomeric and friction dampers. As a benchmark structure, the Alamillo bridge (Seville, Spain), is considered in order to validate the performance of the proposed method. Finally, the parameters of the damping devices designed according to this proposal are successfully compared with the results provided by a conventional design method

    Symplectic Regularization of Binary Collisions in the Circular N+2 Sitnikov Problem

    Full text link
    We present a brief overview of the regularizing transformations of the Kepler problem and we relate the Euler transformation with the symplectic structure of the phase space of the N-body problem. We show that any particular solution of the N-body problem where two bodies have rectilinear dynamics can be regularized by a linear symplectic transformation and the inclusion of the Euler transformation into the group of symplectic local diffeomorphisms over the phase space. As an application we regularize a particular configuration of the circular N+2 Sitnikov problem.Comment: 23 pages, 5 figures. References to algorithmic regularization included, changes in References and small typographic corrections. Accepted in J. of Phys. A: Math. Theor 44 (2011) 265204 http://stacks.iop.org/1751-8121/44/26520
    • 

    corecore