109 research outputs found
Telosentis exiguus (von Linstow, 1901) (Palaeacanthocephala: Illiosentidae), a generalist parasite of fishes in the Mediterranean basin
The morphology of material of the acanthocephalan genus Telosentis van Cleave, 1923 from different parts of the Mediterranean basin is examined in order to assess the validity of T. molini van Cleave, 1923. A redescription of T. exiguus, a generalist species of fishes in the Mediterranean basin, is presented especially in relation to the number of proboscis hooks. The main characteristic of T. exiguus is a cylindrical or club-shaped proboscis, which is covered with 12 longitudinal rows of 14â19 hooks in males and 16â20 in females. Males and females differ in both body size and the number of proboscis hooks. T. molini is considered a junior synonym of T. exiguus. A key to the species of Telosentis is presented
Macroparasite communities in European eels, Anguilla anguilla
European eel parasites, in particular invasive species, are suspected to play a role in the decline in the populations of their host. The aims of this work were to describe the parasitic fauna of eels in French Mediterranean lagoons and to study the epidemiological trends of the invasive helminth species, the nematode Anguillicola crassus and the monogenean Pseudodactylogyrus spp., in regard to spatio-temporal dynamics, host biological characteristics and parasite community. A total of 418 eels was sampled in eight lagoons between March 2003 and June 2005. Our results revealed a total macroparasite richness of 23 species: 1 Monogenea, 13 Digenea, 2 Cestoda, 3 Nematoda, 2 Acantocephala and 2 Crustacea. We found no variation in A. crassus abundance in Salses-Leucate lagoon in the same month across years. However, the nematode abundance was higher in eels caught in summer than in those caught in winter. Pseudodactylogyrus sp. was not found in Salses-Leucate lagoon, except in July 2004. Comparisons between the lagoons on the same date showed that they could be separated into two groups for both species' abundance: Grau-du-Roi, Mauguio, Palavas and VaccarĂšs lagoons, where abundance was rather high, against Bages-Sigean, Pierre-Blanche, Salses-Leucate and Thau lagoons, where abundance was rather low or nil. We found significant negative relationships between A. crassus abundance and the length and age of eels. We also found a significant positive relationship between A. crassus and Pseudodactylogyrus sp. abundance. Finally, our results showed significant positive relationships between both A. crassus and Pseudodactylogyrus sp. abundance and the abundance of the digeneans Prosorhynchus aculeatus and Lecithochirium gravidum. We discuss the results in regard to the dynamics of invasions, the characteristics of the parasite life cycles and the ecology of eels
The disruption of a keystone interaction erodes pollination and seed dispersal networks
Understanding the impacts of global change on ecological communities is a major challenge in modern ecology. The gain or loss of particular species and the disruption of key interactions are both consequences and drivers of global change that can lead to the disassembly of ecological networks. We examined whether the disruption of a hummingbirdâmistletoeâmarsupial mutualism by the invasion of non-native species can have cascading effects on both pollination and seed dispersal networks in the temperate forest of Patagonia, Argentina. We focused on network motifs, subnetworks composed of a small number of species exhibiting particular patterns of interaction, to examine the structure and diversity of mutualistic networks. We found that the hummingbirdâmistletoeâmarsupial mutualism plays a critical role in the community by increasing the complexity of pollination and seed dispersal networks through supporting a high diversity of interactions. Moreover, we found that the disruption of this tripartite mutualism by non-native ungulates resulted in diverse indirect effects that led to less complex pollination and seed dispersal networks. Our results demonstrate that the gains and losses of particular species and the alteration of key interactions can lead to cascading effects in the community through the disassembly of mutualistic networks.Fil: Vitali, AgustĂn. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Sasal, Yamila. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Vazquez, Diego P.. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Ăridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Ăridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Ăridas; ArgentinaFil: Miguel, MarĂa Florencia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Ăridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Ăridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Ăridas; ArgentinaFil: Rodriguez Cabal, Mariano Alberto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. University Of Vermont. Rubenstein School.; Estados Unido
Macroparasite communities in European eels, Anguilla anguilla, from French Mediterranean lagoons, with special reference to the invasive species Anguillicola crassus and Pseudodactylogyrus spp.
European eel parasites, in particular invasive species, are suspected to play a role in the decline in the populations of their host. The aims of this work were to describe the parasitic fauna of eels in French Mediterranean lagoons and to study the epidemiological trends of the invasive helminth species, the nematode Anguillicola crassus and the monogenean Pseudodactylogyrus spp., in regard to spatio-temporal dynamics, host biological characteristics and parasite community. A total of 418 eels was sampled in eight lagoons between March 2003 and June 2005. Our results revealed a total macroparasite richness of 23 species: 1 Monogenea, 13 Digenea, 2 Cestoda, 3 Nematoda, 2 Acantocephala and 2 Crustacea. We found no variation in A. crassus abundance in Salses-Leucate lagoon in the same month across years. However, the nematode abundance was higher in eels caught in summer than in those caught in winter. Pseudodactylogyrus sp. was not found in Salses-Leucate lagoon, except in July 2004. Comparisons between the lagoons on the same date showed that they could be separated into two groups for both species' abundance: Grau-du-Roi, Mauguio, Palavas and VaccarĂšs lagoons, where abundance was rather high, against Bages-Sigean, Pierre-Blanche, Salses-Leucate and Thau lagoons, where abundance was rather low or nil. We found significant negative relationships between A. crassus abundance and the length and age of eels. We also found a significant positive relationship between A. crassus and Pseudodactylogyrus sp. abundance. Finally, our results showed significant positive relationships between both A. crassus and Pseudodactylogyrus sp. abundance and the abundance of the digeneans Prosorhynchus aculeatus and Lecithochirium gravidum. We discuss the results in regard to the dynamics of invasions, the characteristics of the parasite life cycles and the ecology of eels
Macroparasite communities in European eels, <i>Anguilla anguilla</i>, from French Mediterranean lagoons, with special reference to the invasive species <i>Anguillicola crassus</i> and <i>Pseudodactylogyrus</i> spp.
European eel parasites, in particular invasive species, are suspected to play a role in the decline in the populations of their host. The aims of this work were to describe the parasitic fauna of eels in French Mediterranean lagoons and to study the epidemiological trends of the invasive helminth species, the nematode Anguillicola crassus and the monogenean Pseudodactylogyrus spp., in regard to spatio-temporal dynamics, host biological characteristics and parasite community. A total of 418 eels was sampled in eight lagoons between March 2003 and June 2005. Our results revealed a total macroparasite richness of 23 species: 1 Monogenea, 13 Digenea, 2 Cestoda, 3 Nematoda, 2 Acantocephala and 2 Crustacea. We found no variation in A. crassus abundance in Salses-Leucate lagoon in the same month across years. However, the nematode abundance was higher in eels caught in summer than in those caught in winter. Pseudodactylogyrus sp. was not found in Salses-Leucate lagoon, except in July 2004. Comparisons between the lagoons on the same date showed that they could be separated into two groups for both species' abundance: Grau-du-Roi, Mauguio, Palavas and Vaccares lagoons, where abundance was rather high, against Bages-Sigean, Pierre-Blanche, Salses-Leucate and Thau lagoons, where abundance was rather low or nil. We found significant negative relationships between A. crassus abundance and the length and age of eels. We also found a significant positive relationship between A. crassus and Pseudodactylogyrus sp. abundance. Finally, our results showed significant positive relationships between both A. crassus and Pseudodactylogyrus sp. abundance and the abundance of the digeneans Prosorhynchus aculeatus and Lecithochirium gravidum. We discuss the results in regard to the dynamics of invasions, the characteristics of the parasite life cycles and the ecology of eels
Silver eel population size and escapement in a Mediterranean lagoon: Bages-Sigean, France
Much concern has been raised about the decline in the European eel (Anguilla anguilla) population. European management plans for the recovery of the stock are now in preparation, the main objective being to increase the escapement of the potential spawners (silver eels) in each basin to allow 40% of the pristine biomass to escape. However, there are relatively few studies on silver eel escapement and production, and no recent measurement of escapement in lagoons, habitats which support large silver eel sub-populations in the Mediterranean region. A mark-recapture study was carried out in autumn 2007 in order to estimate the number of silver eels migrating from the Bages-Sigean lagoon in the South-West of France. The migrating population, mostly males between 36 and 42 cm, was estimated to be around 1 120 000 eels (30 kg.ha(-1)). The exploitation rate by professional fishermen was around 20% (6 kg.ha(-1)), leading to an escapement level of 80% (24 kg.ha(-1)). The results are discussed regarding the available data in the literature on silver eel escapement.Le dĂ©clin de l'anguille europĂ©enne Anguilla anguilla est trĂšs prĂ©occupant et chaque pays europĂ©en a maintenant le devoir de prĂ©parer un plan de gestion pour la reconstitution du stock. Le principal objectif est d'assurer un taux d'Ă©chappement d'au moins 40 % de la biomasse pristine des anguilles argentĂ©es (futurs gĂ©niteurs) vers leur lieu de reproduction. Cependant, trĂšs peu de recherches ont Ă©tĂ© menĂ©es sur l'estimation du stock et du taux d'Ă©chappement des anguilles argentĂ©es et aucune estimation rĂ©cente du taux d'Ă©chappement n'avait encore Ă©tĂ© rĂ©alisĂ©e en MĂ©diterranĂ©e. Cette Ă©tude de marquage-recapture a Ă©tĂ© rĂ©alisĂ©e en automne 2007 dans le but d'estimer la quantitĂ© d'anguilles argentĂ©es migrantes de la lagune de Bages-Sigean. La population migrante, principalement des mĂąles entre 36 et 42 cm, a Ă©tĂ© estimĂ©e Ă 1 120 000 anguilles (30 kg·haÂ1). Le taux d'exploitation par les pĂȘcheurs professionnels Ă©valuĂ© Ă 20 % (6 kg·haÂ1) laisse suggĂ©rer un taux d'Ă©chappement de 80 % (24 kg·haÂ1). Les rĂ©sultats sont discutĂ©s au regard de la littĂ©rature disponible sur l'Ă©chappement des anguilles argentĂ©es
Moving towards more sustainable aquaculture practices: a meta-analysis on the potential of plant-enriched diets to improve fish growth, immunity and disease resistance
Aquatic animal diseases are one of the major limiting factors in aquaculture development, with disease emergence forecast to increase with global change. However, in order to treat increasing diseases in a context of global emergence of antimicrobial resistance and strengthening regulations on antimicrobial use, sustainable alternatives are urgently needed. The use of plant supplements to increase fish immunity and disease resistance has gained much popularity within the last decades. The use of functional supplements, such as plants, can also improve growth and feed assimilation, contributing to a better optimization of aquaculture resources (e.g. fish meal inclusion). We conducted a systematic review and meta-analysis in order to identify the research gaps in the use of plant-enriched diets in fish aquaculture and estimate, for the first time, the overall efficacy of plant-enriched diets on fish growth, immunity and disease resistance as well as the effect of intrinsic parameters (fish trophic level, type of plant material, dosage, treatment duration and pathogen species) on the treatment efficacy. We found that plant-enriched diets significantly enhanced growth, immunity and disease survival of treated fish, regardless of the fish trophic level, treatment duration and type of material used. We also show that plant supplements are a versatile alternative that can benefit different aquaculture sectors (from small-scale fish farmers to intensive productions). Finally, we observed that studies need to improve the information reported about the plant material used (e.g. origin, identification, chemical composition), in order to allow the comparison of different experiments and improve their repeatability
A review of selected indicators of particle, nutrient and metal inputs in coral reef lagoon systems
This review presents environmental and biological indicators of the impact of three major categories of inputs in coral reef lagoons i.e. particles, nutrients and metals. Information was synthesized to extract well established indicators together with some interesting new concepts currently under development, and to provide the reader with an assessment of their respective advantages and drawbacks. The paper has been organized according to the capacity of three categories of indicators to respond either in a specific or a non specific way to a given source of input. The first section focuses on abiotic indicators which main interest is to respond instantaneously and in a truly specific way to a given source of input. The second and third sections present informations on bioindicators either at the sub-individual level or at the individual to community level, indicator specificity generally decreasing as a direct function of biological or ecological complexity. This review showed that even though significant work has already been done on coral reef ecosystems, much more scientific studies are still needed to answer the growing local demands for simple and truly validated tools to be used in environmental surveys. It is further stressed that, due to the biological and environmental diversity of coral reef lagoons, a preliminary step of on-site validation must be considered as an absolute prerequisite when indicators are planned to be used in the frame of a local environmental monitoring programme
Forest and woodland replacement patterns following drought-related mortality
Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern post drought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.Peer reviewe
Patterns of co-speciation and host switching in primate malaria parasites
<p>Abstract</p> <p>Background</p> <p>The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites.</p> <p>Methods</p> <p>Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between <it>Plasmodium </it>parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites.</p> <p>Results</p> <p>Related lineages of primate-infective <it>Plasmodium </it>tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology.</p> <p>Conclusion</p> <p>The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.</p
- âŠ