8 research outputs found

    Conformational analysis of a 139 base-pair DNA fragment containing a single-stranded break and its interaction with human poly(ADP-ribose) polymerase

    No full text
    The conformational changes induced by the introduction of a central and unique single-stranded break in a 139 base-pair DNA duplex have been analysed by means of polyacrylamide gel electrophoresis, HPLC and dark-field electron microscopy. Compared to the control DNA, the disruption of the covalent sugar-phosphate backbone induces a retardation detected both by gel electrophoresis and anion exchange based HPLC. Electron microscopic visualization of the DNA molecules reveals that most of them present a central fracture at the position of the nick. Measures of the angle at the apex were very well fitted by a simple model of isotropic flexible junction assuming spatial Hooke's law and simple basic Boltzmann statistics. This amounts to using a folded Gaussian distribution. The fit yields an angle equilibrium value phi 0 = 122 degrees for the nicked fragment. The angle distribution could also result from an equilibrium between two forms of the molecule with isotropic flexibility at the nicked site: a stacked and a very flexible unstacked form. The majority of bound poly(ADP-ribose) polymerase, a zinc-finger enzyme involved in DNA break detection, was localized at the apex of the V-shaped DNA duplex, with an accentuation of its general V-shaped conformation (phi 0 = 102 degrees)

    Conformational analysis of a 139 base-pair DNA fragment containing a single-stranded break and its interaction with human poly(ADP-ribose) polymerase

    No full text
    The conformational changes induced by the introduction of a central and unique single-stranded break in a 139 base-pair DNA duplex have been analysed by means of polyacrylamide gel electrophoresis, HPLC and dark-field electron microscopy. Compared to the control DNA, the disruption of the covalent sugar-phosphate backbone induces a retardation detected both by gel electrophoresis and anion exchange based HPLC. Electron microscopic visualization of the DNA molecules reveals that most of them present a central fracture at the position of the nick. Measures of the angle at the apex were very well fitted by a simple model of isotropic flexible junction assuming spatial Hooke's law and simple basic Boltzmann statistics. This amounts to using a folded Gaussian distribution. The fit yields an angle equilibrium value phi 0 = 122 degrees for the nicked fragment. The angle distribution could also result from an equilibrium between two forms of the molecule with isotropic flexibility at the nicked site: a stacked and a very flexible unstacked form. The majority of bound poly(ADP-ribose) polymerase, a zinc-finger enzyme involved in DNA break detection, was localized at the apex of the V-shaped DNA duplex, with an accentuation of its general V-shaped conformation (phi 0 = 102 degrees)

    A psicopatologia da afetividade: aspectos conceituais e históricos

    No full text

    Dye-Ligand Affinity Chromatography: The Interaction of Cibacron Blue F3GA® with Proteins and Enzyme

    No full text
    corecore