2,644 research outputs found

    Plasma Soluble Human Elastin Fragments as an Intra-Aneurysmal Localized Biomarker for Ruptured Intracranial Aneurysm

    Get PDF
    Background—Fragmentation of the tunica media is a hallmark of intracranial aneurysm formation, often leading to aneurysmal progression and subsequent rupture. The objective of this study is to determine the plasma level of elastin fragments in the lumen of ruptured versus unruptured human intracranial aneurysms. Methods and Results—One hundred consecutive patients with/without ruptured saccular intracranial aneurysms undergoing endovascular coiling or stent-assisted coiling were recruited. Blood samples were collected from the lumen of intracranial aneurysm using a microcatheter. The tip of the microcatheter was placed inside the aneurysm’s sac in close proximity to the inner wall of the dome. Plasma levels of elastin fragments were measured using an ELISA-based method. Mean plasma level of soluble human elastin fragments was significantly greater in ruptured aneurysms when compared with nonruptured aneurysms (102.0±15.5 versus 39.3±9.6 ng/mL; P\u3c0.001). Mean plasma level of soluble human elastin fragments did not have significant correlation with age, sex, size, or aneurysm location. Conclusions—The present study revealed that a significantly higher concentration of soluble human elastin fragments in the lumen of ruptured intracranial aneurysms when compared with nonruptured ones. © 2018 The Authors

    Type II supernova spectral diversity, II: spectroscopic and photometric correlations

    Get PDF
    We present an analysis of observed trends and correlations between a large range of spectral and photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase. We define a common epoch for all SNe of 50 days post-explosion, where the majority of the sample is likely to be under similar physical conditions. Several correlation matrices are produced to search for interesting trends between more than 30 distinct light-curve and spectral properties that characterize the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly declining light curves, shorter plateau durations, and higher 56Ni masses. Using a larger sample than previous studies, we argue that "Pd" - the plateau duration from the transition of the initial to "plateau" decline rates to the end of the "plateau" - is a better indicator of the hydrogen envelope mass than the traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This argument is supported by the fact that Pd also correlates with s 3, the light-curve decline rate at late times: lower Pd values correlate with larger s 3 decline rates. Large s 3 decline rates are likely related to lower envelope masses, which enables gamma-ray escape. We also find a significant anticorrelation between Pd and s 2 (the plateau decline rate), confirming the long standing hypothesis that faster declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and therefore have shorter Pd values.Fil: Gutiérrez, Claudia P.. Universidad de Chile; Chile. University of Southampton; Reino Unido. European Southern Observatory Santiago; Chile. Millennium Institute Of Astrophysics; ChileFil: Anderson, Joseph P.. European Southern Observatory Santiago; ChileFil: Hamuy, Mario. Millennium Institute Of Astrophysics; Chile. Universidad de Chile; ChileFil: González Gaitan, Santiago. Universidad de Chile; Chile. Universidade de Lisboa; Portugal. Millennium Institute Of Astrophysics; ChileFil: Galbany, Lluis. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Dessart, Luc. Universidad de Chile; ChileFil: Stritzinger, Maximilian D.. University Aarhus; DinamarcaFil: Phillips, Mark M.. Las Campanas Observatory; ChileFil: Morrell, Nidia. Las Campanas Observatory; ChileFil: Folatelli, Gaston. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin

    Position of Aleutian Low Drives Dramatic Inter-Annual Variability in Atmospheric Transport of Glacial Iron to the Gulf of Alaska

    Get PDF
    Our understanding of glacial flour dust storm delivery of iron to the Gulf of Alaska (GoA) is limited. We interpret concurrent time-series satellite, meteorological, and aerosol geochemical data from the GoA to examine how inter-annual variability in regional weather patterns impacts offshore aerosol glacial iron transport. In 2011, when a northerly Aleutian Low (AL) was persistent during fall, dust emission was suppressed and highly intermittent due to prevalent wet conditions, low winds and a deep early season snowpack. Conversely, in 2012, frequent and prolonged fall dust storms and high offshore glacial iron transport were driven by dry conditions and strong offshore winds generated by persistent strong high pressure over the Alaskan interior and Bering Sea and a southerly AL. Remarkable inter-annual variability in offshore glacial aerosol iron transport indicates that the role of glacial dust in GoA nutrient cycles is likely highly dynamic and particularly sensitive to regional climate forcing

    The Tucana/Horologium, Columba, AB Doradus, and Argus Associations: New Members and Dusty Debris Disks

    Get PDF
    We propose 35 star systems within ~70 pc of Earth as newly identified members of nearby young stellar kinematic groups; these identifications include the first A- and late-B type members of the AB Doradus moving group and field Argus Association. All but one of the 35 systems contain a bright solar- or earlier-type star that should make an excellent target for the next generation of adaptive optics (AO) imaging systems on large telescopes. AO imaging has revealed four massive planets in orbit around the {\lambda} Boo star HR 8799. Initially the planets were of uncertain mass due in large part to the uncertain age of the star. We find that HR 8799 is a likely member of the ~30 Myr old Columba Association implying planet masses ~6 times that of Jupiter. We consider Spitzer Space Telescope MIPS photometry of stars in the ~30 Myr old Tucana/Horologium and Columba Associations, the ~40 Myr old field Argus Association, and the ~70 Myr old AB Doradus moving group. The percentage of stars in these young stellar groups that display excess emission above the stellar photosphere at 24 and 70 \mu m wavelengths - indicative of the presence of a dusty debris disk - is compared with corresponding percentages for members of 11 open clusters and stellar associations with ages between 8 and 750 Myr, thus elucidating the decay of debris disks with time.Comment: Accepted for publication in Ap

    Transcriptional profiling of fetal hypothalamic TRH neurons

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.AbstractBackgroundDuring murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. ResultsIn primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. ConclusionTo our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons.Published versio

    The Architecture of the GW Ori Young Triple Star System and Its Disk: Dynamical Masses, Mutual Inclinations, and Recurrent Eclipses

    Get PDF
    We present spatially and spectrally resolved Atacama Large Millimeter/submillimeter Array (ALMA) observations of gas and dust orbiting the pre-main sequence hierarchical triple star system GW Ori. A forward-modeling of the 13{}^{13}CO and C18{}^{18}O JJ=2-1 transitions permits a measurement of the total stellar mass in this system, 5.29±0.09M5.29 \pm 0.09\,M_\odot, and the circum-triple disk inclination, 137.6±2.0137.6 \pm 2.0^\circ. Optical spectra spanning a 35 year period were used to derive new radial velocities and, coupled with a spectroscopic disentangling technique, revealed that the A and B components of GW Ori form a double-lined spectroscopic binary with a 241.50±0.05241.50\pm0.05 day period; a tertiary companion orbits that inner pair with a 4218±504218\pm50 day period. Combining the results from the ALMA data and the optical spectra with three epochs of astrometry in the literature, we constrain the individual stellar masses in the system (MA2.7MM_\mathrm{A} \approx 2.7\,M_\odot, MB1.7MM_\mathrm{B} \approx 1.7\,M_\odot, MC0.9MM_\mathrm{C} \approx 0.9\,M_\odot) and find strong evidence that at least one (and likely both) stellar orbital planes are misaligned with the disk plane by as much as 4545^\circ. A VV-band light curve spanning 30 years reveals several new \sim30 day eclipse events 0.1-0.7~mag in depth and a 0.2 mag sinusoidal oscillation that is clearly phased with the AB-C orbital period. Taken together, these features suggest that the A-B pair may be partially obscured by material in the inner disk as the pair approaches apoastron in the hierarchical orbit. Lastly, we conclude that stellar evolutionary models are consistent with our measurements of the masses and basic photospheric properties if the GW Ori system is \sim1 Myr old.Comment: 26 pages, 15 figures, accepted to Ap

    Flight Operations of Two Rapidly Assembled CubeSats with Commercial Infrared Cameras: The Rogue-Alpha,Beta Program

    Get PDF
    The Aerospace Corporation’s Rogue-alpha, betaprogram, co-funded by the Space and Missile Systems Center’s Development Corps, is a rapid prototyping effort that built and launched two 3-Unit CubeSats equipped with modified commercial IR camera payloads, laser communications and precision pointing capabilities in 18-months. Launched on 2 November 2019, the two spacecraft were released from the ISS Cygnus NG-12 robotic resupply spacecraft on 31 January 2020 into a circular 460-km, 52° inclined orbit. The two Rogue spacecraft are serving as testbeds for studying wide-field-of-view fast-framing imaging, on-orbit stellar calibration techniques for small IR payloads, and associated spacecraft flight operations. Precision pointing is enabled by three star sensors. High data rate sensor observations are enabled by the ultra-compact 200 Mbps lasercom system, which downlinks gigabytes of stored data during a single laser contact, using The Aerospace Corporation’s prototype ground stations located in El Segundo, California. The Rogue-alpha, beta IR sensor is a 1.4 micron band, 640x512 pixel, 28° field of view, InGaAs SWIR camera. It is accompanied by a panchromatic, 10-megapixel, 37° field of view visible context camera. Modes of sensor operation have included: 1) horizon-pointed imaging in all directions relative to the spacecraft orbit (fore, aft, port, and starboard) which is designed to maximize the imaged field of view, 2) point-and-stare imaging, 3) nadir-pointed, and 4) stereo fore-aft pointing using both spacecraft. All of these modes of operation are usually conducted in multi-frame collections at 1-20hz for dozens to thousands of frames. Highlights from the Rogue-alpha, beta sensor Earth remote sensing observation experiments will be presented. These have included impressive video imagery of hurricanes, typhoons, thunderstorms, and high clouds in the intra-tropical convergence zone. Infrared and visible point sources studied include gas flares, wildfires, active volcanos, nighttime lights, and other phenomena, including the first infrared CubeSat observations of space launch upper stages in flight. Stereo cloud imaging observations were also conducted with an aim of better understanding Earth backgrounds from low Earth orbit. Highlights from the CubeSat flight operations experiments include: 1) spacecraft-to-spacecraft boresight alignment of Rogue’s lasercom systems, and 2) metric and radiometric calibration of Rogue’s flight cameras using bright infrared stars. The results from the Rogue-alpha, beta460-km orbit show the exciting possibilities for wide-field-of-view missions from low earth orbit

    Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations

    Get PDF
    We present an analysis of observed trends and correlations between a large range of spectral and photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase. We define a common epoch for all SNe of 50 days post-explosion, where the majority of the sample is likely to be under similar physical conditions. Several correlation matrices are produced to search for interesting trends between more than 30 distinct light-curve and spectral properties that characterize the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly declining light curves, shorter plateau durations, and higher 56Ni masses. Using a larger sample than previous studies, we argue that "Pd" - the plateau duration from the transition of the initial to "plateau" decline rates to the end of the "plateau" - is a better indicator of the hydrogen envelope mass than the traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This argument is supported by the fact that Pd also correlates with s3, the light-curve decline rate at late times: lower Pd values correlate with larger s3 decline rates. Large s3 decline rates are likely related to lower envelope masses, which enables gamma-ray escape. We also find a significant anticorrelation between Pd and s2 (the plateau decline rate), confirming the long standing hypothesis that faster declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and therefore have shorter Pd values.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat
    corecore