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Abstract 23 

Our understanding of glacial flour dust storm delivery of iron to the Gulf of Alaska (GoA) is limited. 24 

Here we interpret concurrent time-series satellite, meteorological, and aerosol geochemical data from the 25 

GoA to examine how inter-annual variability in regional weather patterns impacts offshore aerosol glacial 26 

Fe deposition. In 2011, when a northerly Aleutian Low (AL) was persistent during fall, dust emission was 27 

suppressed and highly intermittent due to prevalent wet conditions, low winds and a deep early season 28 

snowpack. Conversely, in 2012, frequent and prolonged fall dust storms and high offshore glacial Fe 29 

transport were driven by dry conditions and strong offshore winds generated by persistent strong high 30 

pressure over the Alaskan interior and Bering Sea and a southerly AL. Twenty five-fold inter-annual 31 

variability in regional offshore glacial aerosol Fe deposition indicates that glacial dust’s impact on GoA 32 

nutrient budgets is highly dynamic and particularly sensitive to regional climate forcing.      33 

Introduction: 34 

Iron is an essential micronutrient that limits phytoplankton growth in much of the offshore 35 

subarctic north Pacific. In oceans adjacent to glacierized watersheds, particulates derived from 36 

glacial weathering (glacial flour) are considered a relatively soluble source of iron [Schroth et 37 

al., 2009]. Indeed, transport of glacial iron offshore has been suggested to impact the spatial and 38 

temporal distribution of phytoplankton biomass [Ana M. Aguilar-Islas et al., 2016; Lippiatt et 39 

al., 2011; Strom et al., 2016]. Recent investigations in the Gulf of Alaska (GoA) confirm that 40 

glacial Fe may be transported offshore via a number of mechanisms including: transport of 41 

nearshore, glacial flour rich waters offshore via eddies [Brown et al., 2012; Lippiatt et al., 2011], 42 

continental shelf sediment resuspension [Lam et al., 2006; Lippiatt et al., 2010], and via dust 43 

storms sourced in exposed riverbed sediments of the heavily glacierized GoA watershed and 44 

coastline [Crusius et al., 2011]. Whilst many aspects of the former two mechanisms of offshore 45 

transport of glacial Fe have been directly measured over both time and space via water sampling 46 

programs, dust storm deposition of glacial Fe offshore has only been inferred based on remotely 47 

sensed MODIS satellite imagery. Direct measurements of offshore dust are required to validate 48 

satellite observation and, more importantly, to better constrain the potential role of these events 49 

in the offshore Fe cycle in relation to changing environmental conditions spanning seasonal, inter 50 

annual, decadal, and glacial-interglacial timescales [Ana M. Aguilar-Islas et al., 2016; Hamme et 51 

al., 2010; Martin, 1990; Martin et al., 1991; Melancon et al., 2014; Muhs et al., 2016; Siswanto 52 

et al., 2016]. 53 
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Along the  GoA’s coastline,  dust storms sourced in glacierized river valleys and deltas occur 54 

when a particular suite of hydro-meteorological conditions occur in concert, including: the 55 

autumn recession of peak summer discharge in glacial rivers; dry weather; minimal low 56 

elevation snowpack; and a strong north to south atmospheric pressure gradient near the GoA 57 

coast driven by high pressure positioned over the Bering Sea and interior of Alaska and low 58 

pressure to the south off the British Columbia coast [Crusius et al., 2011]. These hydro-59 

meteorological conditions expose freshly weathered glacial flour, recently deposited in the flood 60 

plains of glacierized river valleys, to dry katabatic-enhanced offshore winds, producing  the 61 

dramatic low-elevation dust storms that have been frequently captured by the MODIS satellites 62 

from late September through December [Crusius et al., 2011; Schroth et al., 2009]. Furthermore, 63 

our examination of historical MODIS data suggests that the frequency, severity and spatial 64 

distribution of these events varies dramatically in both time and space. Yet it is not possible to 65 

quantify accurately the inter-annual variability in dust activity and related offshore aeolian 66 

loading of glacial Fe using the MODIS image record, as cloud cover in the region may prevent 67 

viewing dust events, and at best, the variability of Fe transport can only be inferred. Here, we 68 

analyze a unique continuous time series of offshore transport of glacially derived aerosol Fe  69 

near the continental shelf break at the northern end of the GoA  adjacent to the Fe-limited waters 70 

[Lippiatt et al., 2011]. Fe aerosol time series are coupled with concurrent analysis of dust-source 71 

area meteorology and regional climatology to quantify variability in meteorological conditions in 72 

the source area and discus impacts on the loading of reactive glacial aerosol Fe offshore over 73 

time.  74 

Northern Gulf of Alaska Aerosol Observatory:   In August of 2011, we deployed an 75 

automated sequential aerosol sampler on Middleton Island (Figure 1). Time-integrated aerosol 76 

samples were collected continuously through the spring of 2013. Middleton Island is an ideal site 77 

to sample glacially derived aerosols because: 1) It often lies in the trajectory of glacial flour dust 78 

plumes emanating from their most consistent source detected by MODIS, the Copper River 79 

Valley (e.g. Figure 1); 2) It sits approximately 100 km offshore of the southern Alaska coastline, 80 

near the continental shelf break (Figure 1), beyond which Fe limitation is more prevalent [Boyd 81 

et al., 2007] and aerosol deposition could be a particularly important source of Fe; 3) there is 82 

minimal risk of potential contamination from local sources, as the island is covered by peatlands, 83 

4) USGS sea bird research and Federal Aviation Administration facilities provide useful 84 
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infrastructure in this remote offshore site. In September 2010, a meteorological station was also 85 

deployed in the Copper River Valley (CRV) to monitor the ambient meteorological conditions in 86 

the major dust source area for plumes that have been visually detected over Middleton Island, the 87 

Copper River floodplain and delta (Figure 1). Concomitant changes in temperature, atmospheric 88 

pressure, wind speed, and relative humidity capture the timing and duration of a dust event 89 

within the CRV. Additional precipitation data, event monitoring via MODIS, regional 90 

climatological reanalysis and geochemical analytical methods are discussed in the Methods 91 

section of the Supplemental Information.  92 

Results and Discussion: 93 

Dust Season Fall 2011: The fall of 2011 was characterized by extremely wet conditions and 94 

early development of a deep snowpack (Figure 2C). Snow depths at the 1405 ft. Mt Eyak 95 

SNOTEL site remained above 30 inches after the first week of November and 50 inches of water 96 

equivalent precipitation fell on that site from 10/1 through 12/31, the period that is typically peak 97 

dust season (Figure 2C). Regionally, there was a strong and well-defined sea surface and 500mb 98 

low pressure anomaly positioned across the region for most of the fall dust season (Figure 2A), 99 

indicating a more northern Aleutian Low. This produced ambient conditions in the glacierized 100 

valleys of the Chugach and Wrangell-St Elias Ranges (the dust source area), that suppressed  101 

glacial flour dust storms, including frequent precipitation, a deep early snowpack and a steady 102 

stream of moist low pressure systems traversing the Aleutian Islands and northern GoA (Figure 103 

2A,C). 104 

Yet despite these generally unfavorable seasonal conditions for dust generation and offshore 105 

transport, three dust events were detected with MODIS. All were relatively minor (visually) in 106 

spatial coverage and severity relative to events detected in previous years, (e.g. Figure 1). The 107 

satellite-detected events occurred on October 10th, November 2nd through the 3rd and November 108 

11th of 2011, well within the typical time frame for dust storm generation in this region [Crusius 109 

et al., 2011; Schroth et al., 2009]. During these events, there were dramatic systematic changes 110 

in the autumn meteorological conditions at our monitoring site (Figure 3A).  Indicative of the 111 

arrival of dry air associated with the high pressure inland, relative humidity plummeted from 70-112 

80% to well below 50% for less than a day (Figure 3A). Together, these data demonstrate that 113 

meteorological conditions rapidly shifted intermittently during autumn 2011 to those conducive 114 
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to dust generation for brief time periods, and that even during a fall dominated by extremely wet 115 

and snowy conditions, glacial dust events can occur when the requisite meteorological conditions 116 

are present for as little as a day (e.g. only 22 hrs. below 70% RH during the 11/11 event, Figure 117 

3A). Some of this may be due to the relatively small homogeneous grainsize of the glacial flour 118 

and the structure of the glacial hydrograph, which, upon recession of the glacial melt-derived 119 

component of the hydrograph in early fall (see Figure 2 from Crusius et al. 2011), produces 120 

expansive, extremely well-drained floodplains [Brabets, 1997]. These deposits can drain quickly 121 

(in less than a day) and transition to near surface soil moisture conditions conducive to 122 

generating glacial flour dust storms upon the onset of dry conditions and strong offshore winds, 123 

even when antecedent seasonal conditions have been very wet (Figure 2C).  124 

Dust Season Fall 2012: Seasonal climatological conditions that dominated the dust season during 125 

the fall of 2012 were very different from the preceding fall. A strong and resilient pattern of high 126 

pressure was stationed over the Bering Sea and Alaskan mainland from October through 127 

December, with low pressure mostly positioned well to the south of its position in 2011, and near 128 

the British Columbia coast (Figure 2 A,B). The persistent northern high pressure and more 129 

southerly Aleutian Low suppressed precipitation and snowpack development in the region 130 

relative to the previous fall, which can be seen by the dramatic difference in the cumulative 131 

precipitation and snowpack depth between 2011 and 2012 during the peak dust seasons, (mid-132 

October and early November respectively (Figure S1)).  Furthermore, land-ocean pressure 133 

gradients were much stronger in 2012 relative to 2011 (Figure 2A,B), suggesting the fall period 134 

was dominated by strong dry offshore winds. Indeed, our meteorological monitoring station 135 

confirms the impact of these very different regional meteorological conditions of fall 2012 on the 136 

local drivers of dust generation, wind gust speed, orientation and relative humidity (Figure 137 

3B,D). The persistence of a strong North to South, high to low pressure gradient (Figure 2B) 138 

produced strong (near or above 10 m/s) and dry (<60% relative humidity) northerly (mostly 0-45 139 

degree) winds necessary to facilitate offshore transport of dust for extended periods of time 140 

(Figure 3B,D). Maximum wind gusts during 2012 were substantially stronger and mostly 141 

oriented from the crucial northerly 0-45 degree position for extended periods of time (Figures 142 

3B,D).  Thus, the persistent and elevated pressure gradients of fall 2012 produced conditions in 143 

the CRV that were ideal for almost continuous dust generation, in stark contrast to those 144 

measured during the same period in 2011. 145 
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Indeed, glacial dust events were consistently detected in the MODIS imagery dataset, sometimes 146 

directly over Middleton Island (Figure S3). We observed 29 events emanating from various GoA 147 

glacierized catchments between 10/1 and 1/1 with MODIS imagery, including a 9-day event 148 

from 10/20 through 10/28 during a period of consistent humidity values below 60% and 149 

northerly wind gusts close to or greater than 10 m/s (Figure 3B,D).  Two brief events were 150 

detected on 11/1 and 11/7, which coincided with northerly wind gusts approaching 10 m/s and 151 

relative humidity values below 60%.  Between 11/19/12 and 12/4/12, another prolonged event 152 

was detected via satellite almost daily, making it the longest continuous event that we have 153 

detected in the MODIS dataset. Again, this was a period of consistent northerly wind gusts 154 

around or above 10 m/s, with relative humidity well below 60% (Figure 3B). During both 155 

prolonged events, surface and 500 mb pressure distributions and gradients were broadly similar 156 

in structure with high pressure centered in the Bering Sea and Alaskan interior and low pressure 157 

to the south and east of the study site (Figure S1) A snowfall event that occurred on 12/15 raised 158 

the SNOWTEL-inferred snow depth above 40 inches at Mt Eyak, and snow was visibly covering 159 

the entire valley continuously from this point forward (visible in MODIS images). Persistent 160 

ubiquitous snowpack prevented subsequent severe dust storms, as dust storms were not detected 161 

for the remainder of the year. Yet two events occurred on 12/17 and 12/19 where blowing snow, 162 

perhaps bearing mineral Fe, was observed emanating from the CRV.  163 

Fe Transport and Deposition: It was unclear whether the brief dust events of 2011 would be 164 

detected in our aerosol measurements, as the events appeared on MODIS imagery to be minor, 165 

particularly compared to the 2006 event for which we had estimated Fe loading to the GoA 166 

[Crusius et al., 2011]. It was also visually nebulous as to whether dust transport pathways 167 

directly impacted our observation station (e.g. Figure 1). However, upon examination of the 168 

aerosol time series of the bulk concentration of iron and aluminum on the filters collected during 169 

observed dust event intervals, it is evident that significant Fe deposition was occurring at our 170 

site, even when it was not visually apparent that the plume was impacting Middleton Island (nor 171 

was dust visible on filters) (Figure 4). During these intervals, Fe and Al bulk concentrations were 172 

20 to 100 times higher than ambient background concentrations of Middleton Island air during 173 

conditions preceding the dust events (Figure 4). This confirms that our offshore Fe observatory is 174 

quite sensitive for capturing these events, and assuming a depositional velocity of 1 cm/sec 175 

[Winkler and Rosner, 2000], we estimate 4.02 mg/m2 of aerosol-derived glacial iron was 176 
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deposited around the Middleton Island region of the GoA over the course of the 2011 fall during 177 

these relatively minor and short-lived events.  178 

Upon retrieval of samples spanning the fall of 2012, dust was clearly visually observable on filter 179 

surfaces (Figure S4), confirming that extensive dust deposition was occurring in the northern 180 

region of the GoA, and further suggesting that significantly more atmospheric glacial Fe was 181 

being deposited offshore in 2012 relative to 2011.  Indeed, ten of the filters collected from 10/12 182 

through 12/23 bore more than twice the amount of Fe measured during the strongest event of 183 

2011 (400 ng/m3), and four filters had more than ten times that threshold (Figure 4). 184 

Furthermore, on every filter collected from 10/12/12 through 12/23/12, Fe concentrations were 185 

comparable to or higher than events of 2011 (>80 ng/m3) and elevated relative to ambient 186 

background concentrations (<10 ng/m3). This demonstrates that for a period of over two months, 187 

there was not a single 4 day period when the air at Middleton Island was not enriched in aerosol 188 

glacial Fe derived from the Alaskan coast; a remarkable observation considering that this 189 

coastline is part of the largest contiguous temperate rainforest in the northern hemisphere, and 190 

that this time period coincides with the traditional ‘wet season’ in coastal Alaska.  Furthermore, 191 

our estimate of 102 mg/m2 of glacial Fe deposition in the Middleton Island region of the GoA 192 

indicates that over our relatively short ~2.5-yr. monitoring period, there was 25-fold variability 193 

in the deposition of aeolian glacial iron to offshore waters around Middleton Island during peak 194 

dust season, controlled by differences in seasonal weather patterns driven byvariability in the 195 

position of the Aleutian Low. While our dataset cannot detect a direct biological response to the 196 

marine ecosystem, considering the well-documented Fe limitation of much of the offshore GoA 197 

[Boyd et al., 2007], relatively high solubility of Fe in glacial flour [Schroth et al., 2009], and the 198 

observed response of offshore plankton populations to atmospheric Fe input from volcanic ash 199 

[Hamme et al., 2010], it is likely that such variability has an impact on marine ecology and 200 

offshore Fe cycling in certain regions of the GoA. Furthermore, to predict how glacial flour iron 201 

dust deposition may vary under climate change scenarios, an understanding of the Aleutian Low 202 

dynamics is clearly necessary, as the magnitude, and the spatial distribution of the glacial aerosol 203 

Fe flux in this region over time will be highly dependent on the positioning, severity and 204 

persistence of this regional meteorological feature.  205 
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Fe solubility leaches of glacial dust-bearing filters following the protocols of Schroth et al. 2009 206 

confirm that Fe fractional solubility is characteristic of CRV glacial flour (Figure S2), as the 207 

solubility for each of the 3 different events was similar to that observed for glacial flour parent 208 

material in our earlier work [Crusius et al., 2011; Schroth et al., 2009]. Furthermore, the 209 

remarkable similarity in solubility in all sequential leaches suggests that the fractional solubility 210 

of CRV glacial flour dust is quite consistent across events of variable magnitude and duration, 211 

and characteristic of a dust dominated by mixed valence Fe-silicate species [Schroth et al., 212 

2009]. Similar fractional solubility between previously published estimates of glacial flour parent 213 

material and these offshore glacial aerosols also suggest that there is minimal atmospheric 214 

processing that alters the solubility of dust loads between the CRV source and this offshore 215 

location.  This is likely due to the close proximity to the dust source and therefore minimal time 216 

available for atmospheric processing, [Hand et al., 2004], and the relatively pristine low 217 

elevation air mass that is transporting these dusts, in contrast to more polluted air masses 218 

observed elsewhere [Mahowald et al., 2009]. It is possible, however, that the solubility of glacial 219 

dusts could be altered with either more transport time or when sourced from glacial river 220 

floodplains draining catchments bearing bedrock with Fe phases of a different solubility [Schroth 221 

et al., 2009]. Yet it is also well-established that three successive Mili-QTM leaches significantly 222 

underestimates total solubility of Fe in glacial flour from the CRV and that the total fractional 223 

solubility of Fe in these glacial flour dusts is much higher [Schroth et al., 2009], particularly 224 

when these dusts are exposed to organic ligands in the marine environment [A. M. Aguilar-Islas 225 

et al., 2010]. If we assume a total iron fractional solubility 10% [Crusius et al., 2017; Schroth et 226 

al., 2009], we estimate that 0.4. mg/m2 and 10.2 mg/m2 of soluble Fe was deposited across this 227 

region of the GoA during dust seasons of 2011 and 2012 respectively. This confirms that even 228 

relatively small glacial flour dust storms in the GoA are a significant source of relatively soluble 229 

Fe to offshore Fe-limited waters, with the potential to play an important role in offshore 230 

phytoplankton ecosystem structure and influence primary productivity in Fe-limited waters.  231 

 232 

Spring 2013:  While available data and modeling from the coastal GoA region suggests that little 233 

dissolved or particulate Fe is transported much beyond the shelf break [Ana M. Aguilar-Islas et al., 234 

2016; Crusius et al., 2017], and much of the dissolved Fe supplied to surface waters from autumn dust 235 
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events could persist until spring phytoplankton blooms because the residence time of dissolved Fe in the 236 

ocean is  ~1 yr. [Hayes et al., 2015; Moore and Braucher, 2008], a biological impact of glacial flour 237 

dust remains unverified.  Some uncertainty stems from the fact that events typically occur in fall, when 238 

phytoplankton productivity is decreasing with light availability. However, while examining the MODIS 239 

images during our time series, ten minor events were detected that occurred in winter and early spring 240 

2013 that visually appeared to be blowing either snow, mineral dust, or both offshore (e.g. Figure S5 241 

A,B,C), well before river ice break-up, the onset of significant snowmelt or a significant increase in river 242 

levels. The strong offshore winds and frequent periods of relatively low humidity during March and 243 

April of 2013 confirm that conditions in the source area were conducive to snow blowing offshore (SI 244 

Figure 4).  While these events clearly occur at a lower frequency and are less dramatic (more difficult to 245 

visually detect from MODIS) than those in the fall, they are occurring as light and stratification are 246 

becoming more conducive to phytoplankton blooms offshore [Henson, 2007; Strom et al., 2016], and 247 

therefore have potential to impact offshore ecosystem dynamics. Since the CRV tends to be blanketed in 248 

a particularly deep snowpack during the spring, enhanced by aeolian redistribution of snow sourced 249 

elsewhere in the catchment, it was unclear whether mineral dust is being transported or if it is just Fe-250 

poor snow during these spring events. However, the iron and aluminum aerosol time series collected 251 

during the spring of 2013 confirms that there was significant enrichment of both Fe and Al in our filters 252 

during some spring sampling intervals, and offshore aerosol Fe deposition was comparable in scale (4.28 253 

mg/m2) to the events of fall, 2011(Figure 4). This indicates that these springtime events characterized by 254 

blowing snow also bear a fraction of potentially bioavailable iron (Figure 4) and atmospheric deposition 255 

of glacial Fe offshore can occur for a prolonged period of time during the spring, which contributes to 256 

Fe supply in some regions of the offshore GoA. It should be noted that the spring is also a period when 257 

the impact of Asian dust on our record should be more pronounced [Holzer et al., 2005], as it has been 258 

detected in high elevation snow/ice records of the GoA’s coastal mountains [E Osterberg et al., 2008; 259 

Zdanowicz et al., 2006]. We did not detect a systematic shift in Al:Fe ratios between fall and spring that 260 

might be anticipated if aerosol provenance had changed (Supplementary Table S1).  Further examination 261 

of the relative contribution of Asian and Alaskan dust sources to GoA Fe budgets across time and space 262 

and using other more powerful provenance proxies (eg stable lead isotopes) is certainly warranted, but 263 

beyond the scope of this study.   264 

 265 
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Conclusions and Implications: Our comprehensive analysis of meteorological and aerosol time 266 

series conclusively demonstrates that there is dramatic inter-annual variability in glacial dust 267 

storm severity and occurrence, driven by the duration and persistence of regional fall pressure 268 

gradients, with profound impact on the quantity and distribution of dust-derived glacial iron 269 

deposited offshore in the GoA. When the Aleutian Low feature is persistent and northerly during 270 

the fall, dust transport offshore can be almost completely suppressed, with minimal offshore 271 

deposition of glacial Fe from this source. Conversely, when strong high pressure  persists for 272 

extended periods in the Bering Sea and interior Alaska with a more southern Aleutian Low, 273 

almost continuous fall dust activity and related offshore deposition of soluble Fe can occur  in 274 

one of the wettest regions of the northern hemisphere. Yet even under persistent ambient wet 275 

conditions driven by a steady stream of low pressure systems, very brief windows of dry 276 

conditions and katabatic-enhanced strong offshore flow, even at daily timescales, can trigger 277 

detectable dust events that deliver significant loads of reactive glacial Fe well offshore. The 278 

variability of the track and frequency of these low pressure systems, the strength and position of 279 

the Aleutian Low, must exert a strong control on the spatial and temporal variability of glacial 280 

dust and related iron deposition offshore in the GoA over time, which could be driven by climate 281 

drivers operating on multiple timescales (e.g. El Nino Southern Oscillation, Pacific Decadal 282 

Oscillation, North Pacific Gyre Oscillation) [Di Lorenzo et al., 2013; E C Osterberg et al., 283 

2014].  This variability could have implications for offshore phytoplankton biomass and species 284 

distributions, and profoundly impact offshore Fe cycling. Dusts of the CRV appear to have 285 

relatively consistent fractional solubility characteristic of the Fe mineralogy of this catchment, 286 

and while this does not appear to vary in time, it would presumably vary in space/provenance 287 

due to heterogeneity of catchment lithologies along the variable geology of the coastal GoA 288 

catchments.  Considering the large spatial extent of the glacierized GoA coast, it is also likely 289 

that regional weather patterns that promote dust emissions from the CRV can activate different 290 

glacierized floodplains depending on the particular configuration of pressure and associated wind 291 

fields. This agrees with the analysis of historical MODIS imagery which indicates that particular 292 

floodplains that generate dust across the GoA’s catchment can vary by weather event. 293 

Interestingly, aerosol Fe deposition is also detected during the spring at Middleton Island, 294 

suggesting that springtime events could contribute Fe to offshore blooms as light and thermal 295 

conditions offshore become more conducive to bloom development, which warrants additional 296 
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investigation. As is the case in many such studies, as we attempt to project changes to nutrient 297 

and related ecological dynamics in this region in response to a changing Anthropocene climate, it 298 

is important to consider the dramatic inter-annual variability observed in this study, and more 299 

importantly, the drivers of such variability and how they are projected to change in response to 300 

global climate warming.   301 
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 393 

Figure 1: Location Map of Middleton Island Observatory station (MDO 59º25’17.20”N, 394 

146º20’57.44”W) and Copper River Valley (CRV 60º40’29.44”N, 144º45’07.73”W)  395 

meteorological station, and Mt Eyak Snowtel site (EYAK 60º33’N, 145º45’) superimposed on 396 

the largest glacial dust storm event of 2011 detected by MODIS on 11/2-3. The region is outlined 397 

on the large scale inset Google Earth image of Alaska which includes regional glaciers and 398 

bathymetry where the position of the continental shelf break near our monitoring site is evident.    399 
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Figure 2: NCEP‐NCAP reanalysis [Kalnay et al., 1996] for the GoA region, showing the 405 

average of surface wind and sea level pressure (top map) and 500/350 mb pressure and wind 406 

(bottom map) daily anomalies for (A) 10/01/201111-12/31/2011 and (B) 10/01/2012-12/31/2013, 407 

which are used to illustrate the variability of climatic drivers of dominant fall meteorology in the 408 

GoA region. (C) Cumulative water equivalent precipitation since 9/1 for 2011(blue dashed line) 409 

and 2012 (red dashed line) for the 9/1-12/31 time period for both years) at the Mount Eyak 410 

SNOWTEL site near Cordova, Alaska. Solid lines are measured snow depth at the same sites 411 

(2011 blue, 2012 red). 412 
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 417 

Figure 3: Copper River Valley hourly maximum wind gust speed (black line) and relative 418 

humidity (red line) spanning peak dust season (9/1-12/31) for 2011(A) and 2012(B). Black dots 419 

embedded on the relative humidity time series represent days when dust events emanating from 420 

the Copper River Valley were detected with MODIS. Wind gust orientation rose diagrams are 421 

illustrated for fall 2011(C) and 2012(D).   422 
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 429 

 430 

Figure 4:  2011-2013 time series of iron (orange) and aluminum (green) bulk concentration XRF 431 

data collected for this study at Middleton Island(note log concentration scale). Black dots 432 

embedded on the Fe time series indicate the midpoint of the sampling interval, but the 433 

concentration is representative of total Fe or Al collected on the filter over the sampling interval. 434 
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