924 research outputs found

    The VIMOS VLT Deep Survey. The different assembly history of passive and star-forming L_B >= L*_B galaxies in the group environment at z < 1

    Full text link
    We use the VIMOS VLT Deep Survey to study the close environment of galaxies in groups at 0.2 = L*_B galaxies (Me_B = M_B + 1.1z <= -20) are identified with Me_B <= -18.25 and within a relative distance 5h^-1 kpc <= rp <= 100h^-1 kpc and relative velocity Delta v <= 500 km/s . The richness N of a group is defined as the number of Me_B <= -18.25 galaxies belonging to that group. We split our principal sample into red, passive galaxies with NUV - r >= 4.25 and blue, star-forming galaxies with NUV - r < 4.25. We find that blue galaxies with a close companion are primarily located in poor groups, while the red ones are in rich groups. The number of close neighbours per red galaxy increases with N, with n_red being proportional to 0.11N, while that of blue galaxies does not depend on N and is roughly constant. In addition, these trends are found to be independent of redshift, and only the average n_blue evolves, decreasing with cosmic time. Our results support the following assembly history of L_B >= L*_B galaxies in the group environment: red, massive galaxies were formed in or accreted by the dark matter halo of the group at early times (z >= 1), therefore their number of neighbours provides a fossil record of the stellar mass assembly of groups, traced by their richness N. On the other hand, blue, less massive galaxies have recently been accreted by the group potential and are still in their parent dark matter halo, having the same number of neighbours irrespective of N. As time goes by, these blue galaxies settle in the group potential and turn red and/or fainter, thus becoming satellite galaxies in the group. With a toy quenching model, we estimate an infall rate of field galaxies into the group environment of R_infall = 0.9 - 1.5 x 10^-4 Mpc^-3 Gyr^-1 at z ~ 0.7.Comment: Astronomy and Astrophysics, in press. 11 pages, 11 figures, 4 tables. Minor changes with respect to the first versio

    MASSIV: Mass Assembly Survey with SINFONI in VVDS. V. The major merger rate of star-forming galaxies at 0.9 < z < 1.8 from IFS-based close pairs

    Full text link
    We aim to measure the major merger rate of star-forming galaxies at 0.9 < z <1.8, using close pairs identified from integral field spectroscopy (IFS). We use the velocity field maps obtained with SINFONI/VLT on the MASSIV sample, selected from the star-forming population in the VVDS. We identify physical pairs of galaxies from the measurement of the relative velocity and the projected separation (r_p) of the galaxies in the pair. Using the well constrained selection function of the MASSIV sample we derive the gas-rich major merger fraction (luminosity ratio mu = L_2/L_1 >= 1/4), and, using merger time scales from cosmological simulations, the gas-rich major merger rate at a mean redshift up to z = 1.54. We find a high gas-rich major merger fraction of 20.8+15.2-6.8 %, 20.1+8.0-5.1 % and 22.0+13.7-7.3 % for close pairs with r_p <= 20h^-1 kpc in redshift ranges z = [0.94, 1.06], [1.2, 1.5) and [1.5, 1.8), respectively. This translates into a gas-rich major merger rate of 0.116+0.084-0.038 Gyr^-1, 0.147+0.058-0.037 Gyr^-1 and 0.127+0.079-0.042 Gyr^-1 at z = 1.03, 1.32 and 1.54, respectively. Combining our results with previous studies at z < 1, the gas-rich major merger rate evolves as (1+z)^n, with n = 3.95 +- 0.12, up to z = 1.5. From these results we infer that ~35% of the star-forming galaxies with stellar masses M = 10^10 - 10^10.5 M_Sun have undergone a major merger since z ~ 1.5. We develop a simple model which shows that, assuming that all gas-rich major mergers lead to early-type galaxies, the combined effect of gas-rich and dry mergers is able to explain most of the evolution in the number density of massive early-type galaxies since z ~ 1.5, with our measured gas-rich merger rate accounting for about two-thirds of this evolution.Comment: Published in Astronomy and Astrophysics, 24 pages, 30 figures, 2 tables. Appendix with the residual images from GALFIT added. Minor changes with respect to the initial versio

    A bio-optical model for integration into ecosystem models for the Ligurian Sea

    Get PDF
    A bio-optical model has been developed for the Ligurian Sea which encompasses both deep, oceanic Case 1 waters and shallow, coastal Case 2 waters. The model builds on earlier Case 1 models for the region and uses field data collected on the BP09 research cruise to establish new relationships for non-biogenic particles and CDOM. The bio-optical model reproduces in situ IOPs accurately and is used to parameterize radiative transfer simulations which demonstrate its utility for modeling underwater light levels and above surface remote sensing reflectance. Prediction of euphotic depth is found to be accurate to within ∼3.2 m (RMSE). Previously published light field models work well for deep oceanic parts of the Ligurian Sea that fit the Case 1 classification. However, they are found to significantly over-estimate euphotic depth in optically complex coastal waters where the influence of non-biogenic materials is strongest. For these coastal waters, the combination of the bio-optical model proposed here and full radiative transfer simulations provides significantly more accurate predictions of euphotic depth

    Design and Implementation of a Universal Multimedia Access Environment

    Get PDF
    The objective of Universal Multimedia Access (UMA) is to permit any user equipped with whatever device the access to multimedia information. To handle the problems of UMA, two different approaches are commonly used: store variations of the same content and send the most appropriate one, and store the original content and adapt it on-the-fly. In this project a UMA environment using a mixture of both approaches is proposed. The tools allowing to reach this goal are: an Annotation Tool which describes media using MPEG-7, and a Client-Server Application that takes all the steps for the browsing and retrieval of media. After an overview of the designed UMA system, the function of the MPEG-7 annotation tool is explained. In particular, a descriptor list for content annotation is proposed. These descriptors are meant for content as well as for media feature description. The client-server application is then explained. Particular insight is given into the handling of user preferences and device capabilities. Finally, the UMA environment is tested on a Personal Computer simulating diverse devices and users. These tests show that the system behaves as expected and that possible extensions and improvements can be added

    MASSIV: Mass Assembly Survey with SINFONI in VVDS. VI. Metallicity-related fundamental relations in star-forming galaxies at 1<z<21 < z < 2

    Full text link
    The MASSIV (Mass Assembly Survey with SINFONI in VVDS) project aims at finding constraints on the different processes involved in galaxy evolution. This study proposes to improve the understanding of the galaxy mass assembly through chemical evolution using the metallicity as a tracer of the star formation and interaction history. Methods. We analyse the full sample of MASSIV galaxies for which a metallicity estimate has been possible, that is 48 star-forming galaxies at z0.91.8z\sim 0.9-1.8, and compute the integrated values of some fundamental parameters, such as the stellar mass, the metallicity and the star formation rate (SFR). The sample of star-forming galaxies at similar redshift from zCOSMOS (P\'erez-Montero et al. 2013) is also combined with the MASSIV sample. We study the cosmic evolution of the mass-metallicty relation (MZR) together with the effect of close environment and galaxy kinematics on this relation. We then focus on the so-called fundamental metallicity relation (FMR) proposed by Mannucci et al. (2010) and other relations between stellar mass, SFR and metallicity as studied by Lara-L\'opez et al. (2010). We investigate if these relations are really fundamental, i.e. if they do not evolve with redshift. Results. The MASSIV galaxies follow the expected mass-metallicity relation for their median redshift. We find however a significant difference between isolated and interacting galaxies as found for local galaxies: interacting galaxies tend to have a lower metallicity. The study of the relation between stellar mass, SFR and metallicity gives such large scattering for our sample, even combined with zCOSMOS, that it is diffcult to confirm or deny the existence of a fundamental relation

    The ALHAMBRA survey: An empirical estimation of the cosmic variance for merger fraction studies based on close pairs

    Get PDF
    Aims. Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first time. Methods. We compute the merger fraction from photometric redshift close pairs with 10 h-1 kpc ≤ rp ≤ 50 h-1 kpc and Δv ≤ 500 km s-1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors (including the Poisson shot noise term). Results. The cosmic variance σv of the merger fraction depends mainly on (i) the number density of the populations under study for both the principal (n1) and the companion (n2) galaxy in the close pair and (ii) the probed cosmic volume Vc. We do not find a significant dependence on either the search radius used to define close companions, the redshift, or the physical selection (luminosity or stellar mass) of the samples. Conclusions. We have estimated the cosmic variance that affects the measurement of the merger fraction by close pairs from observations. We provide a parametrisation of the cosmic variance with n1, n2, and Vc, σv ∝ n1-0.54Vc-0.48 (n_2/n_1)-0.37 . Thanks to this prescription, future merger fraction studies based on close pairs could properly account for the cosmic variance on their results

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency &gt;3%, and were also present in the mutant library, had fitness levels that were &gt;40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
    corecore