129 research outputs found
Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro
Post-transcriptional control of gene expression by small regulatory noncoding RNA (sRNA) needs protein accomplices to occur. Past research mainly focused on the RNA chaperone Hfq as cofactor. Nevertheless, recent studies indicated that other proteins might be involved in sRNA-based regulations. As some of these proteins have been shown to self-assemble, we describe in this chapter protocols to analyze the nano-assemblies formed. Precisely, we focus our analysis on Escherichia coli Hfq as a model, but the protocols presented here can be applied to analyze any polymer of proteins. This chapter thus provides a guideline to develop commonly used approaches to detect prokaryotic protein self-assembly, with a special focus on the detection of amyloidogenic polymers
A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties.
International audienceA rhenium tris-carbonyl derivative has been designed to couple infrared and luminescent detection in cells. Both spectroscopies are consistent with one another; they point out the reliability of the present SCoMPI (for Single Core Multimodal Probe for Imaging) for bimodal imaging and unambiguously indicate a localization at the Golgi apparatus in MDA-MB-231 breast cancer cells
Identification of Spectral Modifications Occurring during Reprogramming of Somatic Cells
Recent technological advances in cell reprogramming by generation of induced pluripotent stem cells (iPSC) offer major perspectives in disease modelling and future hopes for providing novel stem cells sources in regenerative medicine. However, research on iPSC still requires refining the criteria of the pluripotency stage of these cells and exploration of their equivalent functionality to human embryonic stem cells (ESC). We report here on the use of infrared microspectroscopy to follow the spectral modification of somatic cells during the reprogramming process. We show that induced pluripotent stem cells (iPSC) adopt a chemical composition leading to a spectral signature indistinguishable from that of embryonic stem cells (ESC) and entirely different from that of the original somatic cells. Similarly, this technique allows a distinction to be made between partially and fully reprogrammed cells. We conclude that infrared microspectroscopy signature is a novel methodology to evaluate induced pluripotency and can be added to the tests currently used for this purpose
Shedding Light on the Chemical Diversity of Ectopic Calcifications in Kidney Tissues: Diagnostic and Research Aspects
In most industrialized countries, different epidemiologic studies show that chronic renal failure is dramatically increasing. Such major public health problem is a consequence of acquired systemic diseases such as type II diabetes, which is now the first cause for end stage renal failure. Furthermore, lithogenic diseases may also induce intratubular crystallization, which may finally result in end-stage renal failure (ESRF). Up to now, such rare diseases are often misdiagnosed. In this study, based on twenty four biopsies, we show that SR µFTIR (Synchrotron Radiation-µFourier transform infrared) spectroscopy constitutes a significant opportunity to characterize such pathological µcalcifications giving not only their chemical composition but also their spatial distribution in the tissues. This experimental approach offers new opportunities to the clinicians to describe at the cell level the physico-chemical processes leading to the formation of the pathological calcifications which lead to ESRF
Chemical Imaging on Liver Steatosis Using Synchrotron Infrared and ToF-SIMS Microspectroscopies
Fatty liver or steatosis is a frequent histopathological change. It is a precursor for steatohepatitis that may progress to cirrhosis and in some cases to hepatocellular carcinoma. In this study we addressed the in situ composition and distribution of biochemical compounds on tissue sections of steatotic liver using both synchrotron FTIR (Fourier transform infrared) and ToF-SIMS (time of flight secondary ion mass spectrometry) microspectroscopies. FTIR is a vibrational spectroscopy that allows investigating the global biochemical composition and ToF-SIMS lead to identify molecular species in particular lipids. Synchrotron FTIR microspectroscopy demonstrated that bands linked to lipid contribution such as -CH3 and -CH2 as well as esters were highly intense in steatotic vesicles. Moreover, a careful analysis of the -CH2 symmetric and anti-symmetric stretching modes revealed a slight downward shift in spectra recorded inside steatotic vesicles when compared to spectra recorded outside, suggesting a different lipid environment inside the steatotic vesicles. ToF-SIMS analysis of such steatotic vesicles disclosed a selective enrichment in cholesterol as well as in diacylglycerol (DAG) species carrying long alkyl chains. Indeed, DAG C36 species were selectively localized inside the steatotic vesicles whereas DAG C30 species were detected mostly outside. Furthermore, FTIR detected a signal corresponding to olefin (C = C, 3000-3060 cm−1) and revealed a selective localization of unsaturated lipids inside the steatotic vesicles. ToF-SIMS analysis definitely demonstrated that DAG species C30, C32, C34 and C36 carrying at least one unsaturated alkyl chain were selectively concentrated into the steatotic vesicles. On the other hand, investigations performed on the non-steatotic part of the fatty livers have revealed important changes when compared to the normal liver. Although the non-steatotic regions of fatty livers exhibited normal histological aspect, IR spectra demonstrated an increase in the lipid content and ToF-SIMS detected small lipid droplets corresponding most likely to the first steps of lipid accretion
Molecular characterization of the EhaG and UpaG trimeric autotransporter proteins from pathogenic Escherichia coli
Trimeric autotransporter proteins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. A common feature of most TAAs is the ability to mediate adherence to eukaryotic cells or extracellular matrix (ECM) proteins via a cell surface-exposed passenger domain. Here we describe the characterization of EhaG, a TAA identified from enterohemorrhagic Escherichia coli (EHEC) O157:H7. EhaG is a positional orthologue of the recently characterized UpaG TAA from uropathogenic E. coli (UPEC). Similarly to UpaG, EhaG localized at the bacterial cell surface and promoted cell aggregation, biofilm formation, and adherence to a range of ECM proteins. However, the two orthologues display differential cellular binding: EhaG mediates specific adhesion to colorectal epithelial cells while UpaG promotes specific binding to bladder epithelial cells. The EhaG and UpaG TAAs contain extensive sequence divergence in their respective passenger domains that could account for these differences. Indeed, sequence analyses of UpaG and EhaG homologues from several E. coli genomes revealed grouping of the proteins in clades almost exclusively represented by distinct E. coli pathotypes. The expression of EhaG (in EHEC) and UpaG (in UPEC) was also investigated and shown to be significantly enhanced in an hns isogenic mutant, suggesting that H-NS acts as a negative regulator of both TAAs. Thus, while the EhaG and UpaG TAAs contain some conserved binding and regulatory features, they also possess important differences that correlate with the distinct pathogenic lifestyles of EHEC and UPEC
Age at onset as stratifier in idiopathic Parkinson’s disease – effect of ageing and polygenic risk score on clinical phenotypes
Several phenotypic differences observed in Parkinson’s disease (PD) patients have been linked to age at onset (AAO). We endeavoured to find out whether these differences are due to the ageing process itself by using a combined dataset of idiopathic PD (n = 430) and healthy controls (HC; n = 556) excluding carriers of known PD-linked genetic mutations in both groups. We found several significant effects of AAO on motor and non-motor symptoms in PD, but when comparing the effects of age on these symptoms with HC (using age at assessment, AAA), only positive associations of AAA with burden of motor symptoms and cognitive impairment were significantly different between PD vs HC. Furthermore, we explored a potential effect of polygenic risk score (PRS) on clinical phenotype and identified a significant inverse correlation of AAO and PRS in PD. No significant association between PRS and severity of clinical symptoms was found. We conclude that the observed non-motor phenotypic differences in PD based on AAO are largely driven by the ageing process itself and not by a specific profile of neurodegeneration linked to AAO in the idiopathic PD patients
Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis
BackgroundHistologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD.MethodsThis was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0–4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0–2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226.FindingsOf 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44–63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33–91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62–0·81) for histology, 0·76 (0·70–0·83) for LSM-VCTE, 0·74 (0·64–0·82) for FIB-4, and 0·70 (0·63–0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression.InterpretationSimple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases
Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure
Main conclusion Chemical imaging of pollen by vibrational microspectroscopy enables characterization of pollen ultrastructure, in particular phenylpropanoid components in grain wall for comparative study of extant and extinct plant species. A detailed characterization of conifer (Pinales) pollen by vibrational microspectroscopy is presented. The main problems that arise during vibrational measurements were scatter and saturation issues in Fourier transform infrared (FTIR), and fluorescence and penetration depth issues in Raman. Single pollen grains larger than approx. 15 µm can be measured by FTIR microspectroscopy using conventional light sources, while smaller grains may be measured by employing synchrotron light sources. Pollen grains that were larger than 50 µm were too thick for FTIR imaging since the grain constituents absorbed almost all infrared light. Chemical images of pollen were obtained on sectioned samples, unveiling the distribution and concentration of proteins, carbohydrates, sporopollenins and lipids within pollen substructures. The comparative analysis of pollen species revealed that, compared with other Pinales pollens, Cedrus atlantica has a higher relative amount of lipid nutrients, as well as different chemical composition of grain wall sporopollenin. The pre-processing and data analysis, namely extended multiplicative signal correction and principal component analysis, offer simple estimate of imaging spectral data and indirect estimation of physical properties of pollen. The vibrational microspectroscopy study demonstrates that detailed chemical characterization of pollen can be obtained by measurement of an individual grain and pollen ultrastructure. Measurement of phenylpropanoid components in pollen grain wall could be used, not only for the reconstruction of past environments, but for assessment of diversity of plant species as well. Therefore, analysis of extant and extinct pollen species by vibrational spectroscopies is suggested as a valuable tool in biology, ecology and palaeosciences.acceptedVersio
Identification de micro-organisme pathogènes impliqués dans les infections nosocomiales par spectroscopie infrarouge à transfomée de Fourier et méthodes statistiques
Nous avons utilisé la spectroscopie infrarouge à transformée de Fourier (IRTF) pour identifier des micro-organismes pathogènes isolés en milieu clinique. L'intérêt de la technique dans le typage de souches de Candida albicans a été démontré. Trois applications cliniques ont été réalisées : suivi épidémiologique de patients en service de réanimation, confirmation d'un épisode de transmission nosocomiale chez des nouveaux-nés et suivi épidémiologique des souches d'un patient septicémique. Une base de données comprenant 670 spectres de bactéries Gram - et Gram + appartenant aux 18 espèces et 11 genres les plus fréquents en clinique a été construite. Le taux d'identification est de 84% pour les Gram - et de 97% pour les Gram +. L'usage de la microspectroscopie IRTF pour l'identification précoce de micro-organismes a été évalué. Une base de données comprenant 1570 spectres de bactéries appartenant à 160 souches, 15 espèces et 9 genres fréquemment isolés a été réaliséeREIMS-BU Santé (514542104) / SudocSudocFranceF
- …