476 research outputs found

    Three Attempts at Inflation Forecasting in Pakistan

    Get PDF
    This paper presents three empirical approaches to forecasting inflation in Pakistan. The preferred approach is a leading indicators model in which broad money growth and private sector credit growth help forecast inflation. A univariate approach also yields reasonable forecasts, but seems less suited to capturing turning points. A vector autoregressive (VAR) model illustrates how monetary developments can be described by a Phillips-curve type relationship. We deal with potential parameter instability on account of fundamental changes in Pakistan’s economic system by restricting our sample to more recent observations. Gregorian and Islamic calendar seasonality are addressed by using 12-month moving averages.Inflation, Forecasting, Pakistan

    A framework for detection and classification of events in neural activity

    Full text link
    We present a method for the real time prediction of punctate events in neural activity, based on the time-frequency spectrum of the signal, applicable both to continuous processes like local field potentials (LFP) as well as to spike trains. We test it on recordings of LFP and spiking activity acquired previously from the lateral intraparietal area (LIP) of macaque monkeys performing a memory-saccade task. In contrast to earlier work, where trials with known start times were classified, our method detects and classifies trials directly from the data. It provides a means to quantitatively compare and contrast the content of LFP signals and spike trains: we find that the detector performance based on the LFP matches the performance based on spike rates. The method should find application in the development of neural prosthetics based on the LFP signal. Our approach uses a new feature vector, which we call the 2D cepstrum.Comment: 30 pages, 6 figures; This version submitted to the IEEE Transactions in Biomedical Engineerin

    Numerical analysis of two phase fluid flow and heat transfer in a condenser.

    Get PDF
    A quasi-three-dimensional algorithm is developed to simulate two-phase fluid flow and heat transfer in the shell side of power plant condensers. The simulation method developed is based on the fundamental governing conservation equations of mass and momentum for both gas and liquid phases, and the air mass fraction conservation equation. In the proposed numerical method, the condenser shell side is subdivided into a number of domains normal to the cooling water flow direction. The three-dimensional effects due to the cooling water temperature difference are taken into account by a series of two dimensional calculations, each being for one domain. A porous media concept is employed to model the tube bank. The pressure drop balance concept is used to determine the inlet mass flow rate for each domain. A staggered grid is used to perform the discretization. The resulting discretized equations are solved using the SIMPLEC algorithm. The numerical predictions of an experimental steam condenser are compared with the available experimental results. The predicted results are in good agreement with the experimental data. The results also show an improvement over the results obtained using a single-phase model. Sensitivity studies are carried out for four different correlations of condensation heat transfer coefficient.Dept. of Mechanical, Automotive, and Materials Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1994 .B64. Source: Masters Abstracts International, Volume: 34-02, page: 0853. Adviser: C. Zhang. Thesis (M.A.Sc.)--University of Windsor (Canada), 1995

    Spin glasses without time-reversal symmetry and the absence of a genuine structural glass transition

    Full text link
    We study the three-spin model and the Ising spin glass in a field using Migdal-Kadanoff approximation. The flows of the couplings and fields indicate no phase transition, but they show even for the three-spin model a slow crossover to the asymptotic high-temperature behaviour for strong values of the couplings. We also evaluated a quantity that is a measure of the degree of non-self-averaging, and we found that it can become large for certain ranges of the parameters and the system sizes. For the spin glass in a field the maximum of non-self-averaging follows for given system size a line that resembles the de Almeida-Thouless line. We conclude that non-self-averaging found in Monte-Carlo simulations cannot be taken as evidence for the existence of a low-temperature phase with replica-symmetry breaking. Models similar to the three-spin model have been extensively discussed in order to provide a description of structural glasses. Their theory at mean-field level resembles the mode-coupling theory of real glasses. At that level the one-step replica symmetry approach breaking predicts two transitions, the first transition being dynamical and the second thermodynamical. Our results suggest that in real finite dimensional glasses there will be no genuine transitions at all, but that some features of mean-field theory could still provide some useful insights.Comment: 11 pages, 11 figure

    Interfacial Phenomena and Natural Local Time

    Full text link
    This article addresses a modification of local time for stochastic processes, to be referred to as `natural local time'. It is prompted by theoretical developments arising in mathematical treatments of recent experiments and observations of phenomena in the geophysical and biological sciences pertaining to dispersion in the presence of an interface of discontinuity in dispersion coefficients. The results illustrate new ways in which to use the theory of stochastic processes to infer macro scale parameters and behavior from micro scale observations in particular heterogeneous environments

    Corrections for "Occupation and local times for skew Brownian motion with applications to dispersion across an interface"

    Full text link
    We are making corrections and acknowledging colleagues that pointed out mistakes in our recent paper titled "Occupation and local times for skew Brownian motion with applications to dispersion across an interface" which was published in Annals of Applied Probability (2011) 21(1) 183-214. Specifically the corrections are: 1. The restriction of Îł\gamma to non negative values in Theorem 1.3 is not needed. But one has probabilistic interpretation only when Îł\gamma is non negative. 2. State the correct formulas in Corollary 3.3 as their were computational errors in the original formulas. We thank Pierre Etoir\'e and Miguel Martinez for pointing out these errors.Comment: Published in at http://dx.doi.org/10.1214/11-AAP775 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Link Overlap and Finite Size Effects for the 3D Ising Spin Glass

    Full text link
    We study the link overlap between two replicas of an Ising spin glass in three dimensions using the Migdal-Kadanoff approximation and scaling arguments based on the droplet picture. For moderate system sizes, the distribution of the link overlap shows the asymmetric shape and large sample-to-sample variations found in Monte Carlo simulations and usually attributed to replica symmetry breaking. However, the scaling of the width of the distribution, and the link overlap in the presence of a weak coupling between the two replicas are in agreement with the droplet picture. We also discuss why it is impossible to see the asymptotic droplet-like behaviour for moderate system sizes and temperatures not too far below the critical temperature.Comment: 7 pages, 10 figure

    A Method for Detection and Classification of Events in Neural Activity

    Get PDF
    We present a method for the real time prediction of punctuate events in neural activity, based on the time-frequency spectrum of the signal, applicable both to continuous processes like local field potentials (LFPs) as well as to spike trains. We test it on recordings of LFP and spiking activity acquired previously from the lateral intraparietal area (LIP) of macaque monkeys performing a memory-saccade task. In contrast to earlier work, where trials with known start times were classified, our method detects and classifies trials directly from the data. It provides a means to quantitatively compare and contrast the content of LFP signals and spike trains: we find that the detector performance based on the LFP matches the performance based on spike rates. The method should find application in the development of neural prosthetics based on the LFP signal. Our approach uses a new feature vector, which we call the 2d cepstrum
    • …
    corecore