112 research outputs found

    An Assessment of Artificial Burrows for Burrowing Owls in Northern California

    Get PDF
    This study assesses artificial burrows as a management tool for burrowing owls (Athene cunicularia) at two study sites in northern California. The results of t-tests showed that artificial burrows that received annual surface maintenance (n = 113) at one site were occupied for a significantly (p ≤ 0.003) greater number of years than non-maintained (n = 51) artificial burrows at the other site. Maintained burrows were occupied for a mean of 1.90 years (SD = 2.04), compared to a mean of 0.45 years (SD = 0.97) for non-maintained burrows. Even with maintenance, occupancy rates dropped from 31% during the first year to 8% during the third year post-installation. Maintenance or reinstallation of the entire burrow system appears to be crucial for longer-term use. The results of chi-squared goodness-of-fit tests showed no significant difference in nesting success (≥ 1 fledgling/pair) between natural and artificial burrows at either of the study sites (χ2 = 2.75 and 6.76, df = 3, p \u3e 0.05). Of 120 burrowing owls raised in maintained artificial burrows, 70% were re-sighted occupying artificial burrows during subsequent breeding seasons, compared to 30% occupying natural burrows. Only 3% of these owls occupied their natal burrow during the first nesting season post-fledging. Of those owls that were re-sighted during two or more nesting seasons, almost half (48%) occupied different artificial burrows from one year to the next

    Systems Engineering on the James Webb Space Telescope

    Get PDF
    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2014. System-level verification of critical performance requirements will rely on integrated observatory models that predict the wavefront error accurately enough to verify that allocated top-level wavefront error of 150 nm root-mean-squared (rms) through to the wave-front sensor focal plane is met. This paper describes the systems engineering approach used on the JWST through the detailed design phase

    Disentangling effects of climate and land use on biodiversity and ecosystem services - a multi‐scale experimental design

    Get PDF
    Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs

    Novel mutations in the VKORC1 gene of wild rats and mice – a response to 50 years of selection pressure by warfarin?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coumarin derivatives have been in world-wide use for rodent pest control for more than 50 years. Due to their retarded action as inhibitors of blood coagulation by repression of the vitamin K reductase (VKOR) activity, they are the rodenticides of choice against several species. Resistance to these compounds has been reported for rodent populations from many countries around the world and poses a considerable problem for efficacy of pest control.</p> <p>Results</p> <p>In the present study, we have sequenced the <it>VKORC1 </it>genes of more than 250 rats and mice trapped in anticoagulant-exposed areas from four continents, and identified 18 novel and five published missense mutations, as well as eight neutral sequence variants, in a total of 178 animals. Mutagenesis in <it>VKORC1 </it>cDNA constructs and their recombinant expression revealed that these mutations reduced VKOR activities as compared to the wild-type protein. However, the <it>in vitro </it>enzyme assay used was not suited to convincingly demonstrate the warfarin resistance of all mutant proteins</p> <p>Conclusion</p> <p>Our results corroborate the <it>VKORC1 </it>gene as the main target for spontaneous mutations conferring warfarin resistance. The mechanism(s) of how mutations in the <it>VKORC1 </it>gene mediate insensitivity to coumarins <it>in vivo </it>has still to be elucidated.</p

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Detecting Starting Point Bias in Dichotomous-Choice Contingent Valuation Surveys

    Full text link

    Cartel Stability under an Optimal Sharing Rule

    Full text link

    Dissipation of Knowledge and the Boundaries of the Multinational Enterprise

    Full text link

    What are the Effects of Contamination Risks on Commercial and Industrial Properties? Evidence from Baltimore, Maryland

    Full text link
    corecore