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Abstract
1. Climate and land- use change are key drivers of environmental degradation in the 

Anthropocene, but too little is known about their interactive effects on biodiver-
sity and ecosystem services. Long- term data on biodiversity trends are currently 
lacking. Furthermore, previous ecological studies have rarely considered climate 
and land use in a joint design, did not achieve variable independence or lost statis-
tical power by not covering the full range of environmental gradients.

2. Here, we introduce a multi- scale space- for- time study design to disentangle ef-
fects of climate and land use on biodiversity and ecosystem services. The site se-
lection approach coupled extensive GIS- based exploration (i.e. using a Geographic 
information system) and correlation heatmaps with a crossed and nested de-
sign covering regional, landscape and local scales. Its implementation in Bavaria 
(Germany) resulted in a set of study plots that maximise the potential range and 
independence of environmental variables at different spatial scales.

3. Stratifying the state of Bavaria into five climate zones (reference period 1981– 
2010) and three prevailing land- use types, that is, near- natural, agriculture and 
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1  | INTRODUC TION

Human actions are threatening the interdependent yet fragile bal-
ance of the biosphere, with far- reaching consequences for the diver-
sity of plants (Brummitt et al., 2015) and animals (Dirzo et al., 2014). 
As biodiversity contributes a wealth of ecological services, cascading 
effects and reassembly of communities jeopardise human well- being 
and biosphere's resilience against current and future disturbance 
(Chaplin- Kramer et al., 2019; Mori et al., 2018). Many of the ser-
vices, such as food provisioning, decomposition or maintenance of 
soil fertility, rely on biotic interactions potentially sensitive to global 
change. This is especially true for regulating services provided by 
the highly diverse class of insects: pollination and pest regulation, 
both shown to strongly affect food production (Dainese et al., 2019; 
Duffy et al., 2017). Reported losses of insect biomass and abun-
dances across Europe and the globe are therefore particularly worri-
some (Hallmann et al., 2017; Seibold et al., 2019; Wagner, 2020). Yet 
the full cross- taxon magnitude of declines and the relative contribu-
tions of man- made drivers remain poorly understood.

One of the greatest threats to biodiversity is land- use change, the 
transformation of terrestrial ecosystems for infrastructure, human set-
tlements and the production of crops, animals and timber (Newbold 
et al., 2015). Landscape simplification, urbanisation, deforestation 
and agricultural intensification alter environmental conditions and the 

availability of habitats and resources, but also the structure of entire 
landscapes, that is, their composition (amount of different habitat 
types) and configuration (spatial arrangement and patch size of hab-
itats, commonly assessed as ‘edge density’). Both variables are often 
highly correlated (Fahrig et al., 2011) and might interact in nonlinear 
ways (Martin et al., 2019; Redlich et al., 2018), while attempts to disen-
tangle them by reducing the parameter space may lower the statistical 
power of study designs (Figure 1). Concurrently, land- use effects on 
biodiversity and ecosystem services depend on spatial scaling, the de-
gree of specialisation and movement capability of taxa and ecological 
processes considered (Piano et al., 2020; Wiens, 1989), with import-
ant implications for population dynamics, the diversity of fungi, plants 
and animals, and in consequence for ecosystem functions and services 
(Díaz et al., 2019; Foley et al., 2005; Newbold et al., 2015). While mac-
roecological processes such as environmental filtering determine re-
gional species pools, species diversity and population abundances at 
smaller spatial scales relate to multi- habitat use, dispersal ability, re-
source availability and trophic interactions. For instance, large- scale 
urbanisation reassembles terrestrial and aquatic invertebrate commu-
nities (Piano et al., 2020), but local conversion from natural habitat to 
cropland reduces species abundances and the multitrophic functional 
biodiversity in agroecosystems (Provost et al., 2020) with flow- on ef-
fects for pollination, pest regulation and crop productivity (Dainese 
et al., 2019).

urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean an-
nual temperature gradient of 5.6– 9.8°C and a spatial extent of ~310 × 310 km. 
Within these regions, we nested 180 study plots located in contrasting local land- 
use types, that is, forests, grasslands, arable land or settlement (local climate gradi-
ent 4.5– 10°C). This approach achieved low correlations between climate and land 
use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and 
|r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot se-
lection reduced potentially confounding relationships between landscape compo-
sition and configuration for plots located in forests, arable land and settlements.

4. The suggested design expands upon previous research in covering a significant 
range of environmental gradients and including a diversity of dominant land- use 
types at different scales within different climatic contexts. It allows independ-
ent assessment of the relative contribution of multi- scale climate and land use on 
biodiversity and ecosystem services. Understanding potential interdependencies 
among global change drivers is essential to develop effective restoration and miti-
gation strategies against biodiversity decline, especially in expectation of future 
climatic changes. Importantly, this study also provides a baseline for long- term 
ecological monitoring programs.

K E Y W O R D S

biodiversity, climate change, ecosystem functioning, insect monitoring, land use, space- for- 
time approach, spatial scales, study design
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Climate is another major driver of biodiversity. Long- term data 
on species distributions along latitudinal and elevational climatic 
gradients demonstrate significant poleward and upward shifts of 
species' ranges driven by global warming (Parmesan, 2006). In the 
future, extinction risks across all animal taxa— but particularly ecto-
thermic organisms such as insects— may further increase with accel-
erating climate change (Urban, 2015; Warren et al., 2018). Similarly, 
plant community richness is likely to decrease in temperate climates, 
where the range of thermal tolerances in regional species pools is 
narrow (Harrison, 2020). Both for animals and plants, the risk of ex-
tinction and the potential to expand their geographic range in re-
sponse to climate change largely depend on species- specific traits 
such as the climatic tolerance and the capacity to disperse and colo-
nise new habitats (Estrada et al., 2016). As a consequence, individual 
species' traits and the resulting ratio between climate change win-
ners and losers drive the overall impact of climate change on biodi-
versity and the restructuring of communities.

Specific land- use types may prevent climate- induced range shifts 
and accelerate extinctions (Fox et al., 2014; Peters et al., 2019), espe-
cially in case of less mobile specialists (Fourcade et al., 2021; Warren 
et al., 2001). Alternatively, (in)vertebrate communities in anthro-
pogenic land- use types may shift towards drought-  and warming- 
tolerant species (Williams & Newbold, 2020). Understanding the 
independent and combined impact of land- use and climate change 
on biodiversity, community composition and ecosystem services 
is needed to predict future changes and allow for management 
strategies that mitigate further losses. However, <10% of available 
studies analyse combinations of both drivers (Rillig et al., 2019), and 
commonly observed correlations make it difficult to disentangle 
individual effects (Peters et al., 2019). First, land use is driven by 
current and historic demographic and political settings, environ-
mental conditions (e.g. soil characteristics) and climatic parameters, 
often causing geographic clustering of land- use types (Dale, 1997). 

Second, land- use change may feed back to the atmosphere and alter 
regional climate including water availability by precipitation (Laux 
et al., 2017; Williams & Newbold, 2020). Furthermore, as long- term 
data on climate, land use and biodiversity are currently lacking, re-
cently established monitoring schemes will not deliver sufficient 
data in the near future and time- series analysis may be prone to bi-
ases (Didham et al., 2020).

Here, we report on a step- by- step protocol (Figure 2) for a com-
prehensive study design that systematically combines full gradients of 
climate and land use at various spatial scales to investigate interacting 
effects on biodiversity of a wide range of primarily terrestrial taxa. This 
method was developed within the framework of a large- scale interdis-
ciplinary climate research project (LandKlif, www.landk lif.bioze ntrum.
uni- wuerz burg.de). The stratified, nested design used intensive GIS- 
based exploration of potential study regions and a new site- selection 
approach based on heatmaps to reduce potential pitfalls of ecological 
studies on effects of land- use and climate: (a) non- independence of 
climate and land- use variables, and correlations among land- use re-
lated composition and configuration variables; (b) restrictions in gradi-
ent range or the number of spatial scales considered (i.e. reduction of 
parameter space); and (c) lacking monitoring data for biodiversity and 
ecosystem services. The described method can be useful for similar 
multi- scale research programs and long- term ecosystem monitoring, 
but will also allow for predictions of potential interactive impacts of 
climate and land use in a space- for- time approach.

2  | MATERIAL S AND METHODS

2.1 | Study area

The three- step study design (Figure 2) was implemented in 2019 in 
Bavaria, Southern Germany. With an area of around 70,000 km2 and 

F I G U R E  1   Disentangling effects of landscape composition and configuration in large- scale ecological studies. Relationship between 
variables can be positive, negative, nonlinear or independent, depending on habitat amount, habitat type and region (a). Random selection 
of study plots regularly results in significant correlations between variables (blue points, b), while posterior exclusion of plots reduces 
correlations but also the covered parameter space (yellow rectangle and points, b). A priori knowledge of potential correlations and targeted 
selection of study plots using heatmaps reduces correlations and increases the parameter space (green rectangle and points). Dashed 
trend lines in blue, yellow and green in (b) indicate the expected change of landscape variable correlations depending on the site selection 
approach
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13 mil. inhabitants, it is the largest and second most populous state 
of Germany (Bayerisches Landesamt für Statistik, 2020). The land 
use of Bavaria is dominated by human influences, but also comprises 
less intensively used near-  or semi- natural areas. While 7% consti-
tute urban areas and 53% agricultural land or managed grassland, 
the remaining 40% are covered by (mostly managed) forests, nature 
protection areas and other near- natural habitats (CORINE, 2012). 
Bavaria's size and heterogeneity of climate and anthropogenic influ-
ences makes it a suitable pilot region for studying and disentangling 
effects of climate and land use in temperate regions and at the re-
gional, landscape and local scale.

2.1.1 | Step 1— Selection of study regions 
(‘quadrants’) based on climate and land- use zones

At the regional scale, a stratified sampling approach ensured com-
plete coverage of climate and land- use gradients and largely un-
correlated, orthogonal parameter combinations of both (Figure 2). 
Regions were hereby defined as existing 5.8 × 5.8 km quadrants, 
which build the cells of a spatial grid covering the whole of Bavaria 
(‘TK25’ topographical map established in 1868, scale 1:25,000). The 
scale of the TK25 mapping system is large enough to assess effects 
of climate and accommodate three spatially independent study plots 

F I G U R E  2   General overview of three- 
step plot selection process, exemplified 
by a large- scale interdisciplinary climate 
research project in Bavaria, Germany. 
Step 1: Selection of 60 study quadrants 
(i.e. study regions) based on 15 climate– 
land- use combinations. Step 2: Creation 
of heatmaps to disentangle landscape 
composition and configuration variables in 
1- km radius. Step 3: Based on heatmaps, 
selection of final 180 study plots in 
contrasting local land- use types

Create correlation heatmaps for each dominant local land-use
type (light grey = low correlation, dark grey = high correlation) 
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(see below), while maximising regional climate and land- use con-
trasts. Additionally, historic land use maps and floristic and faunistic 
inventories allow to evaluate changes over time.

To select potential climate– land- use combinations, quadrants 
were first classified into five climatic zones (<7.5, 7.5– 8, 8– 8.5, 
8.5– 9 and >9°C) based on 30- year mean air temperature data (1- 
km2 resolution) averaged for each quadrant (climatological reference 
period 1981– 2010, Deutscher Wetterdienst, 2020). We further cat-
egorised each quadrant as one of three dominant regional land- use 
types based on proportional land use (CORINE, 2012; Table S1): 
near- natural quadrants (>85% near- natural vegetation with a mini-
mum of 50% forest), agricultural quadrants (>40% arable land and 
managed grassland) and urban quadrants (>14% housing, industry 
and traffic infrastructure). Due to the long history of anthropogenic 
land use, pristine native habitats are very rare in Bavaria (<2%). 
Forests— mostly managed but permanent habitats— can therefore be 
considered as less disturbed than agricultural land with high pesti-
cide pressure or urban areas with high levels of sealing. Accordingly, 
we merged forests, woodlands, nature protection areas and semi- 
natural habitats (mostly calcareous grasslands and wetlands) in the 
category ‘near- natural’, and made sure a sufficient amount of forest 
(>50%) was present in each ‘near- natural’ quadrant. Cut- off values 
for land use and climate were chosen to (a) maximise climatic dif-
ferences and the contrast among land- use types, with anthropo-
genic impact ranging from low (near- natural) to very high (urban); 
(b) achieve equal intervals and a similar number of quadrants within 
each category; and (c) obtain enough quadrants in each class to real-
ise an even distribution and meet logistic requirements (e.g. reduce 
travelling time, avoid no- fly zones for UAVs where aerial assess-
ments were planned). Based on these prerequisites, we selected 

four quadrants of each of the 15 climate– land- use combinations (60 
quadrants, i.e. study regions, Figures 2 and 3).

2.1.2 | Step 2— Create heatmaps to reduce 
correlations among landscape variables

Within each of the 60 quadrants, we aimed to investigate the im-
pact of local land use and interactive effects of landscape- scale land 
use (composition and configuration) on biodiversity and ecosystem 
services. The landscape scale was hereby defined as 1- km radius 
around local study plots, as this scale was shown to have ecologi-
cal relevance for arthropods (Bosem Baillod et al., 2017; Holzschuh 
et al., 2016; Thies et al., 2003). As the strength of correlations among 
landscape variables depends on the location of local study plots, we 
implemented a novel heatmap approach with a priori knowledge 
of potential relationships (Figure 1). These correlation heatmaps— 
created for four dominant contrasting local land- use types identi-
fied within our quadrants— served as systematic criterion for local 
study plot selection by identifying potential sites with the lowest 
possible correlation between landscape composition and configura-
tion (Figure 2).

The procedure to create these heatmaps involved the following 
steps: (1) Within each quadrant and starting 1 km away from the 
quadrant edge, we created a grid of 320 m resolution (resolution of 
the underlying CORINE data (2012), Figure 4a). We calculated four 
landscape composition variables (proportional cover of four local 
land- use types: forest, grassland, arable land, settlement) and one 
configuration variable (edge density, i.e. length of edges between 
all habitat types on a per unit area, m/ha) for a 1- km radius buffer 

F I G U R E  3   Implementation of a 
full- factorial, stratified design crossing 
regional climate and land use in Bavaria, 
Southern Germany. Climate zones (a) were 
based on 30- year (1981– 2010) mean air 
temperatures in each quadrant (1: <7.5°C, 
2: 7.5– 8°C, 3: 8– 8.5°C, 4: 8.5– 9°C, 5: 
>9°C). For land use (b), we distinguished 
between near- natural quadrants (>85% 
near- natural vegetation with a minimum of 
50% forest), agricultural quadrants (>40% 
arable land and managed grassland), and 
urban quadrants (>14% housing, industry 
and traffic infrastructure). The final 60 
quadrants (i.e. study regions, c) covered 
15 climate– land- use combinations with 
four replicates each
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around the centre of each 320 × 320 m grid cell (Figure 4b). Edge 
density was selected, because previous studies highlight its rele-
vance for spillover and resource complementarity for biodiversity 
and ecosystem services (e.g. Martin et al., 2019). The next steps, 
here exemplified for forest, were repeated for each local land- use 
type. (2) We selected all grid cells (Figure 4c) with a proportional 
forest cover of >20% (to accommodate a 0.5- ha study plot and a 
3 × 30 m experimental area) and >5% forest in the surrounding 1- km 
radius buffer (to ensure a minimum amount of forest was present 
in the surrounding landscape). (3) Of these forest grid cells and as-
sociated landscape buffers, we randomly chose one in each of the 
60 study quadrants— if existent (quadrants without forest grids were 
excluded)— and calculated the overall Pearson's r correlation coeffi-
cient between the surrounding landscape composition (here forest 
cover) and configuration (edge density) based on the random plot 
selection. (4) This random selection and calculation was repeated 
10,000 times. (5) For each forest grid cell i we then calculated the 
average Pearson's ri coefficient across all the random combinations 
of points in which this cell was included:

where ri,j is the jth Pearson's r coefficient resulting from random se-
lection of that specific forest dominated grid cell i, and n is the num-
ber of times that grid cell i was included in one of the 10,000 random 
selections of points. And (6) in a last step and considering all forest 
grid cells in our 60 quadrants, we used natural breaks (Jenks natural 
breaks algorithm implemented in ArcMap v10.4) to classify the range 
of mean correlations into three categories to create the correlation 
heatmap for the local land- use type forest (Figure 4c). By repeating the 
steps described in (2– 6) for all land- use types (forest, grassland, arable 
land, settlement), we derived a set of four heatmaps for each of the 
60 quadrants. During the local plot selection process (Step 3), these 
heatmaps helped to reduce correlations of landscape composition and 

configuration around plots with specific land- use types (e.g. only forest 
plots), but also across all study plots.

2.1.3 | Step 3— Selection of local study plots

Within each quadrant, we aimed to establish local study plots of 
0.5 ha size within contrasting land- use types (Figure 2). Although 
six main local land- use types had been identified during the 
heatmap process, two were neglected due to irrelevance for the 
project's scope (water) or as not available in sufficient quantity 
(semi- natural). Of the four dominant types (forest, grassland, ar-
able land or settlement) not all were present in each quadrant. 
Therefore, we focused on three of the four dominant types per 
quadrant by considering availability (if only three types present) or 
regional dominance (three types with highest proportional cover) 
and contrast (whenever proportional cover of two land- use types 
was similar). We then used the respective heatmaps to preferen-
tially place study plots in grid cells that had low predicted correla-
tion values for the specific land- use type. We aimed to maximise 
the representativeness of land- use types by making predefined 
choices in plot selection: broadleaf was favoured over coniferous 
forests, intensive over extensive grasslands, conventional arable 
fields over organic or perennial fields and urban over rural settle-
ments. To account for additional differences within habitats, we 
assessed local plant communities after plot establishment (vegeta-
tion surveys on seven subplots with a total of 10 m2 in 2019 and 
during transect walks in 200- m radius of sites in 2020). We also 
recorded local microclimatic variables (hourly measurements of 
temperature and humidity in 1.2 m height using thermologgers) to 
complement our long- term macroclimatic data, allow for across- 
scale comparisons and assess the potential of specific land- use 
types to mitigate climate change impacts by creating microclimatic 
refugia. Further decision rules for plot selection included land-
owner permission, >2 km between plots, >50 m away from roads, 

ri =

∑n

j=1
ri,j

n
,

F I G U R E  4   Process of deriving correlation heatmaps for each dominant land- use type to guide the selection of local study plots. Colours 
of polygons represent different land- use types (see classification in Table S1). Create a fishnet (a) of 320 m resolution inside each of 60 
study quadrants (i.e. study regions). Calculate landscape composition and configuration within a 1- km radius around the centre of each 
320 × 320 m grid cell (b). Select grid cells dominated by the respective land- use type (here forest, dark green) and create land- use specific 
heatmaps of mean correlations between landscape composition and configuration based on 10,000 random selections of grid cells across 
all quadrants (c). Shades of grey in heatmaps indicate levels of the predicted degree of correlation (light = high correlation, dark = low 
correlation) if the respective grid was chosen
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water bodies and other land- use types, protection from vandalism 
and good accessibility. Nested within our large- scale factorial de-
sign, the resulting 180 plots allowed us to assess the influence of 
local land use on biodiversity and ecosystem services, while mini-
mising correlations between landscape composition and configu-
ration and accounting for microclimatic and structural differences.

2.2 | Assessing efficiency of study design

We assessed the efficiency of our stratified selection and heatmap 
approach by (a) region (5.8 × 5.8 km): calculating Pearson's r cor-
relation coefficients between regional climate and the proportion of 
our regional dominant land- use types near- natural, agriculture and 
urban; and (b) landscape (1- km radius): assessing relationships be-
tween local climate and the proportion of our dominant local land- 
use types forest, grassland, arable land and settlement. We also 
visually compared final correlation values between landscape com-
position and configuration with histograms of potential correlations 
resulting from 10,000 random selections.

The proportion of land- use types (region, landscape) and land-
scape composition and configuration variables were calculated in 
ArcGIS pro v2.2.0 and ArcMap v10.4 using CORINE data (2012). 
Climate data for regions and landscapes (mean air temperatures 
and associated precipitation amounts) were calculated using 
Esri ASCII grid raster files with 1 × 1 km resolution (Deutscher 
Wetterdienst, 2020) by averaging pixel values within each 
5.8 × 5.8 km quadrant and 1- km buffer around selected study plots, 
respectively. Although the land- use and climate variables presented 
here for the quadrant and 1- km scale were the basis for establishing 
our design, we also calculated these metrics at smaller and larger 
scales for different subprojects and depending on the biodiver-
sity and ecosystem services under consideration (not shown). All 
Pearson's r coefficients were calculated in R v4.0.2.

3  | RESULTS

3.1 | Implementation of the experimental design

Our design and selection process (Figure 2) allowed us to minimise 
the correlations between climate, land use and landscape metrics at 
multiple scales and resulted in an approximately even distribution of 
60 quadrants (i.e. study regions) across Bavaria (Figure 3).

The regions stretched across extensive environmental gradi-
ents of temperature, precipitation and elevation, while covering 
large land- use gradients (Table 1). Regional land use (proportion of 
near- natural, agriculture and urban habitat) showed low correlations 
with regional mean temperatures (Figure 5a– c) and precipitation 
(|r < 0.3|, Figure S1a– c).

For each quadrant, the heatmap procedure yielded four heat-
maps (one each for the local land- use types forest, grassland, arable 
land and settlement), which were used to identify potential study 

plots within dominant local land- use types (Figure 6b– d). After 
ground- truthing of sites and gaining permission of landowners, three 
final plots were chosen per quadrant (Figure 6e), yielding 179 of 180 
expected study plots (Figure 6a). One study plot was discarded as 
landowner permission was denied. Forest (n = 55) was the most se-
lected local land- use type, followed by grassland (n = 46), arable land 
(n = 43) and settlement (n = 35).

On the landscape scale in 1- km radius around our study, the use 
of heatmaps during the site selection process helped us to achieve 
extensive, mostly uncorrelated spatial gradients of climate and land 
use (Table 1). Correlations of landscape- scale temperature and pre-
cipitation with composition variables (Figure 4d– g, Figure S1D– G) 
were low, as were correlations of both climate variables with edge 
density (temperature r = −0.17, precipitation r = 0.07). The cor-
relation between precipitation and temperature was moderately 
negative across plots (r = −0.51), yet the microclimatic variables tem-
perature and humidity, which were assessed throughout the study 
season, showed a low positive relationship (r = 0.32).

Compared to potential correlations based on the random se-
lection of study plots (histograms of 10,000 random selections, 
Figure 7), the heatmap approach resulted in lower actual correla-
tions (blue lines, Figure 7) between landscape composition and con-
figuration in 1- km radius around study plots if plots were located in 
forest, arable land and settlements (Figure 7a,c,d). Only for grass-
land, the final correlation was positive and higher than predicted 
(Figure 7b). Taking all study plots independent of the local land- use 
type into account, this pattern was even stronger, with correlations 
between the proportion of habitats and edge density being very low 
for forest (Pearson's r = −0.31), arable land (r = 0.09) and settle-
ment (r = −0.08), yet high for grassland (r = 0.51) (red line, Figure 7, 
Figure S2). Correlations among composition variables ranged from 
r = −0.13 (settlement and grassland) to −0.55 (arable land and forest).

This multi- scale GIS- supported study design is suited to disen-
tangle climate and land- use effects on general and functional biodi-
versity and plant-  or animal- based ecosystem services. In LandKlif, 
numerous add- on studies assess these relationships using a range 
of observational, empirical, modelling and survey data collected on 
different spatial scales (Table 2). The diversity of studies will allow us 
to investigate trade- offs between different measures of biodiversity 
and ecosystem services.

4  | DISCUSSION

Studies assessing the combined effects of land use and climate on 
biodiversity and ecosystem services commonly struggle with non- 
independence of climate and land- use variables, restrictions in gra-
dient range or scale and insufficient long- term datasets. Here, we 
present the protocol for a large- scale experimental design that aims 
to overcome these issues. While our basic design follows the selec-
tion principles for multi- scale landscape studies outlined in previous 
papers (Fahrig et al., 2011; Gillespie et al., 2017; Pasher et al., 2013), 
the use of a novel, automated heatmap approach and the inclusion of 



8  |    Methods in Ecology and Evoluon REDLICH Et aL.

independent climatic gradients sets this design apart, both as base-
line and space- for- time study.

First, the crossed and nested design resulted in relatively weak 
correlations between climate and land use at the regional (|r| < 0.33) 
and landscape scale (|r| < 0.29). The design also decoupled regional 
climate and land- use effects from the influence of small- scale land 
use due to the selection of three of four dominant local land- use 
types (forest, grassland, arable land or settlements) within our 60 
quadrants (i.e. study regions). Regarding landscape composition and 
configuration in a 1- km radius around study plots, the heatmap ap-
proach lowered correlations compared to average potential correla-
tions for specific local land- use types (blue lines, Figure 7), but these 
benefits were not that substantial in absolute terms (i.e. correlations 
for selected plots quite close to peak of distribution for random se-
lection). However, there are three points to consider: (a) these actual 
correlations were based on a subset of plots (specific local land- use 
types), and were much lower for forest, arable land and settlement 
if calculated across all study plots (red lines, Figure 7), which is the 
gradient range primarily used for analysis in our project; (b) reducing 
landscape correlations may be difficult for land- use types such as 
forest, where patches generally occur clustered, causing higher neg-
ative correlations with edge density than for settlements or arable 

land. For grassland, correlations seem to be generally low, yet in-
creased during the selection process, possibly due to inherent cor-
relations among land- use types and nonlinear relationships between 
grassland amount and edge density in the landscape; and (c) in our 
project, complex private ownership structures, logistic and other 
constraints (e.g. transportation costs, time constraints, accessibil-
ity and permissions) prevented us from selecting combinations of 
study plots closer to r = 0. Our method is situated halfway between 
two extremes: the blind selection of study plots that may inher-
ently cause strong landscape correlations or requires the reduction 
in parameter space (see Figure 1) and choosing the best available 
random selection of plots during the process of creating heatmaps. 
Accordingly, the chance of moving towards low landscape correla-
tions ultimately depends on the gradient range and land- use type 
considered and methodological, logistical and ownership constraints 
that may be lower in other studies.

Second, we increased the coverage of spatial scales and land- use 
types, thereby maximising the number of explanatory factors that 
can be analysed in parallel. Concurrently, our method of ‘a priori’ 
employing long- term climate data and extensive GIS- based explo-
ration of potential study plots enabled us to cover independent, 
large climatic and land- use gradients. For landscape composition 

TA B L E  1   Summary statistics and description of climate and land- use variables on local, landscape and regional scale

Variable Description Range Mean ± SD

Region (5.8 × 5.8 km)

Climate Temperature 30- year (1981– 2010) mean air temperature 5.6– 9.8°C 8.2 ± 0.8°C

Precipitation 30- year (1981– 2010) mean precipitation 614– 1,820 mm 939 ± 263 mm

Elevation Elevation averaged at resolution of 1 arc- 
second (SRTM, 2020)

228– 915 m 477 ± 161 m

Land use Near- natural Proportion near- natural including forest 0.8 to 97.1% 40 ± 27.7%

Agriculture Proportion agriculture (arable + grassland) 0.3%– 91.0% 44.7 ± 24.9%

Urban Proportion urban (housing, industry + traffic) 0%– 97.2% 14.7 ± 21.1%

Landscape (1- km radius)

Climate Temperature 30- year (1981– 2010) mean air temperature 4.5– 10°C 8.2 ± 0.8°C

Precipitation 30- year (1981– 2010) mean precipitation 590– 1,987 mm 928 ± 249 mm

Elevation Elevation averaged at resolution of 1 arc- 
second (SRTM, 2020)

168– 1,122 m 489 ± 167 m

Land use Composition Forest Proportion forest 0%– 100% 37.9 ± 32.3%

Grassland Proportion grassland 0%– 80.2% 15.7 ± 17.1%

Arable Land Proportion arable land 0%– 99.4% 28.7 ± 29.2%

Settlement Proportion settlement 0%– 100% 16.1 ± 25.8%

Configuration Edge density Edge density (length of edges between all 
habitat types on a per unit area)

0– 66.0 m/ha 28.1 ± 13.8 m/
ha

Study plot (0.5 ha)

(Micro)climate Temperature Average temperature on study plots between 
April and September 2019

13.7– 19°C 16.9 ± 1.0°C

Humidity Average relative humidity on study plots 
between April and September 2019

62.3%– 82.2% 70.2 ± 4.1%

Land use Local land- use 
type

Three out of four dominant habitat types 
(forest, grassland, arable land, settlement)— 
categorical variable

NA NA
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F I G U R E  5   Relationships between 30- year mean temperatures (1981– 2010) and proportional land cover (composition) for the regional 
land- use types near- natural (a), agriculture (b) and urban (c), and for the landscape- scale land- use types forest (d), grassland (e), arable land 
(f) and settlement (g). Pearson's r coefficients based on 60 quadrants (5.8 × 5.8 km study regions, a– c) and 179 (out of expected 180) study 
plots (1- km radius around local study plots, d– g)
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F I G U R E  6   Map of all 179 (out of expected 180) study plots in 60 study regions (a) and example of heatmaps for three dominant local 
land- use types (arable land (b), forest (c), and settlement (d)) used for the final selection of study plots (e). Shades of grey in heatmaps 
indicate levels of the predicted degree of correlation (light = high correlation, dark = low correlation) if the respective grid was chosen
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and configuration of the full set of 179 final study plots, our data 
highlight the natural, unimodal relationship between these variables, 
which is most pronounced for forest cover and grows weaker from 
grassland to arable land and settlement, with peaks between 40% 
and 60% land cover (Appendix S2). This implies that studies covering 
narrow landscape gradients between 0%– 50% and 50%– 100% may 
observe contrasting positive or negative correlations between these 
landscape variables, respectively, while studies focussed on inter-
mediate landscape gradients are most likely to reduce the correla-
tion between variables and differentiate between individual effects, 
which may be impossible at the extreme ends of the spectrum.

Finally, our extensive on- field assessments within this experi-
mental framework will fill existing knowledge gaps about biodiversity 
trends across taxa, relationships between above-  and below- ground 
arthropods and the microbial diversity of decomposer communities. 
For instance, the current design allowed us to detect contrasting re-
sponses of total flying insect biomass and richness to land use and 
climate (Uhler et al., 2021). Yet the proposed method can also easily 
be extended to include higher resolution land- use types or detailed 
landscape structures ecologically relevant for specific target or-
ganisms. We can also assess potential trade- offs among ecosystem 
service provisioning and current and predicted interactive effects 
of climate and land use on biodiversity– ecosystem functioning rela-
tionships. In this context, the implemented space- for- time approach 

has crucial advantages over time series. Recently established long- 
term biodiversity monitoring schemes will not yield meaningful 
results before several decades, which may be too late considering 
the current speed of global change. Furthermore, long- term climatic 
change often goes hand in hand with land- use change, making it 
difficult to disentangle individual effects (Dale, 1997). In addition, 
issues such as shifting baselines or phenologies, bias in site selection 
and detection may cause misleading results in time- series analysis 
(Didham et al., 2020). Other methods, such as large- scale, manip-
ulative climate– land- use experiments following the idea of BACI 
designs (Before- After- Control- Impact studies, Christie et al., 2019) 
are highly interesting but almost impossible to implement. While 
large- scale factorial experiments can be used to cancel out envi-
ronmental noise that may override ecosystem responses to global 
change (Schädler et al., 2019), implementation costs are high and 
the required block set- up on relatively small spatial scales is unsuit-
able for assessing effects on mobile organisms such as pollinators 
or mammals.

Space- for- time approaches also have limitations. For instance, 
other drivers of biodiversity, such as anthropogenic pressure or al-
tered biotic interactions, may mask the response to climate, espe-
cially if only small spatial scales (a few kilometres or less) with small 
climatic differences are considered (Blois et al., 2013). Similarly, 
time- lags in the response of biodiversity to either climate or land 

F I G U R E  7   Potential and actual Pearson's r correlations between landscape composition (proportional cover of land- use types) and 
configuration (edge density) in 1- km radius around study plots. Histograms (grey bars) show range of potential correlations resulting from 
10,000 random selections of grid cells (i.e. potential study plots, cf. ‘heatmap procedure’). Compared to those, actual correlations (blue lines) 
between edge density and the proportion of forest (n = 55; a), arable land (n = 43; c) and settlement (n = 35; d) were lower than expected for 
the final selection of plots if only considering plots within the same land- use type as at the landscape scale (e.g. only forest plots for a). For 
grassland plots, the actual correlation between grassland proportion and edge density was higher than expected (n = 46; b). Red lines show 
actual correlations among edge density and land- use specific composition variables across all selected study plots, independent of local 
habitat type (n = 179)
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use may reduce the accuracy of space- for- time studies compared 
to long- term time series (Banet & Trexler, 2013). In contrast, data 
obtained from spatial observations were shown to overestimate 
phenology responses to temperature compared to long- term phe-
nological data (Jochner et al., 2013). Still, space- for- time substitu-
tions based on the largest possible climatic gradient are a useful and 
fast alternative to gain important, policy- relevant insights into the 
interactive effects of climate and land- use change on biodiversity 
and ecosystem services. They also complement long- term studies 
by highlighting more general patterns. By utilising the full param-
eter space of the climatic and landscape variables assessed here 
(Figure 1), we enhanced the validity of space- for- time substitutions 
related to climate change (Blois et al., 2013). We further reduced 
the chance of observing misleading findings in cases where non- 
monotonic relationships cause contradictory relationships between 
environmental variables and biodiversity if only a narrow variable 
range is used (Eigenbrod et al., 2011).

5  | CONCLUSIONS

Our multi- scale study protocol expands on previous designs which 
addressed local gradients in climate and land use (Peters et al., 2019) 

or gradients in landscape structure in multiple regions (Gillespie 
et al., 2017; Holzschuh et al., 2016). It allows to evaluate scale- 
dependent and interactive effects of current climate and land- use 
gradients on biodiversity and ecosystem services, thereby highlight-
ing landscape management schemes with the potential to mitigate 
adverse effects of climate change. Similarly, the assessment of a 
large diversity of ecosystem responses identifies high- risk groups 
and trade- offs between different aspects of biodiversity and eco-
system services, as well as land- use types and scales particularly 
prone to face negative climate change impacts. The observed re-
lationships can then be used to parameterise and validate climate– 
land- use models, which help to predict long- term responses to 
climate change. Furthermore, our design provides valuable baseline 
data to assess the effectiveness of future restoration measures at 
local, landscape and regional scales. We believe that this approach of 
an objective, multi- scale site selection across large regions deserves 
consideration in the implementation of national and European long- 
term ecosystem monitoring schemes.
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Plot

Vertebrates Diversity and density of game Plot/Bavaria

Ecosystem services Pest regulation* Predation and parasitism rate, herbivory Plot

Decomposition* Decomposition of deadwood, carrion and dung Plot
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*Additional ecosystem services assessed.
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