30 research outputs found

    Altered Glycosylation Contributes to Placental Dysfunction Upon Early Disruption of the NK Cell-DC Dynamics

    Get PDF
    Immune cells [e. g., dendritic cells (DC) and natural killer (NK) cells] are critical players during the pre-placentation stage for successful mammalian pregnancy. Proper placental and fetal development relies on balanced DC-NK cell interactions regulating immune cell homing, maternal vascular expansion, and trophoblast functions. Previously, we showed thatin vivodisruption of the uterine NK cell-DC balance interferes with the decidualization process, with subsequent impact on placental and fetal development leading to fetal growth restriction. Glycans are essential determinants of reproductive health and the glycocode expressed in a particular compartment (e.g., placenta) is highly dependent on the cell type and its developmental and pathological state. Here, we aimed to investigate the maternal and placental glycovariation during the pre- and post-placentation period associated with disruption of the NK cell-DC dynamics during early pregnancy. We observed that depletion of NK cells was associated with significant increases of O- and N-linked glycosylation and sialylation in the decidual vascular zone during the pre-placental period, followed by downregulation of core 1 and poly-LacNAc extended O-glycans and increased expression of branched N-glycans affecting mainly the placental giant cells and spongiotrophoblasts of the junctional zone. On the other hand, expansion of DC induced a milder increase of Tn antigen (truncated form of mucin-type O-glycans) and branched N-glycan expression in the vascular zone, with only modest changes in the glycosylation pattern during the post-placentation period. In both groups, this spatiotemporal variation in the glycosylation pattern of the implantation site was accompanied by corresponding changes in galectin-1 expression. Our results show that pre- and post- placentation implantation sites have a differential glycopattern upon disruption of the NK cell-DC dynamics, suggesting that immune imbalance early in gestation impacts placentation and fetal development by directly influencing the placental glycocode

    Estudo caso-controle pareado avaliando a frequência dos principais agentes causadores de diarréia neonatal em suínos no Rio Grande do Sul

    Get PDF
    A case-control study was carried out in litters of 1 to 7-day-old piglets to identify the main infectious agents involved with neonatal diarrhea in pigs. Fecal samples (n=276) from piglets were collected on pig farms in the State of Rio Grande do Sul, Brazil, from May to September 2007. Litters with diarrhea were considered cases (n=129) and normal litters (n=147) controls. The samples were examined by latex agglutination test, PAGE, conventional isolating techniques, ELISA, PCR, and microscopic methods in order to detect rotavirus, bacterial pathogens (Escherichia coli, Clostridium perfringens type A and C, and Clostridium difficile), and parasites (Coccidian and Cryptosporidium spp.). Outbreaks of diarrhea were not observed during sampling. At least one agent was detected in fecal samples on 25 out of 28 farms (89.3%) and in 16 farms (57.1%) more than one agent was found. The main agents diagnosed were Coccidia (42.86%) and rotavirus (39.29%). The main agents identified in litters with diarrhea were Clostridium difficile (10.6%), Clostridium perfringens type A (8.8%) and rotavirus (7.5%); in control litters, Clostridium difficile (16.6%) and Coccidian (8.5%). Beta hemolytic Escherichia coli and Clostridium perfringens type C were not detected. When compared with controls, no agent was significantly associated with diarrhea in case litters. These findings stress the need for caution in the interpretation of laboratorial diagnosis of mild diarrhea in neonatal pigs, as the sole detection of an agent does not necessarily indicate that it is the cause of the problem.Um estudo de caso-controle em leitegadas de um a sete dias de idade foi realizado com o objetivo de identificar os principais agentes infecciosos envolvidos na diarreia neonatal de leitões. As amostras de fezes (n=276) foram coletadas em granjas de suínos no Estado do Rio Grande do Sul, Brasil, no período de maio a setembro de 2007. Leitegadas com diarreia foram consideradas casos (n=147) e leitegadas normais, controles (n=129). As amostras foram examinadas através do teste de aglutinação em látex, PAGE, cultivo, ELISA, PCR e métodos microscópicos para a excreção dos principais agentes de diarreia: virais (rotavirus), bacterianos (Escherichia coli, Clostridium perfringens tipos A e tipo C e Clostridium difficile) e parasitários (coccídeos e Cryptosporidium spp.). Durante o período do estudo não foram observados surtos e a diarréia, quando presente, apresentou-se leve. Pelo menos um agente foi identificado nas amostras fecais de 25 entre 28 granjas (89,3%) analisadas e em 16 granjas (57,1%) mais de um agente foi detectado. Os principais agentes encontrados nas granjas foram coccídeos (42,86%) e rotavírus (39,29%). Os principais agentes detectados nas leitegadas com diarreia foram Clostridium difficile (10,6%), Clostridium perfringens tipo A (8,8%) e rotavírus (7,5%). Por outro lado, nas leitegadas controle os agentes mais prevalentes foram Clostridium difficile (16,6%) e coccídeos (8,5%). E. coli Beta hemolítica e Clostridium perfringens tipo C não foram detectados. O presente estudo de caso-controle demonstrou que nenhum agente infeccioso esteve associado significativamente com diarreia (p>0.05). Esses achados reforçam a necessidade de que haja cuidado na interpretação de resultados de exames laboratoriais em materiais coletados de leitões com diarreia neonatal leve, pois a detecção isolada de um agente infeccioso não indica necessariamente que o mesmo seja a causa do problema

    Acceleration of TAA-Induced liver fibrosis by stress exposure is associated with upregulation of nerve growth factor and glycopattern deviations

    Get PDF
    Liver fibrosis results from many chronic injuries and may often progress to cirrhosis andhepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely,stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role indisrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine modelof TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulatorof the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophinreceptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosiswhereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent thanstress challenge. We further show that the fibrogenesis induced by stress is characterized by specificchanges in the hepatoglycocode (increased β1,6GlcNAc-branched complex N-glycans and decreasedcore 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared topatients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liverinjury and identify NGF signaling pathway in early stages of the disease, which contributes to theestablished fibrogenesis.Fil: Atorrasagasti, María Catalina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Piccioni, Flavia Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Borowski, Sophia. Universitat Hamburg; Alemania. Max Delbruk Center For Molecular Medicine In The Helmholtz Association (mdc); Alemania. Charité Universitätsmedizin Berlin; AlemaniaFil: Tirado González, Irene. Charité Universitätsmedizin Berlin; Alemania. Max Delbruk Center For Molecular Medicine In The Helmholtz Association (mdc); Alemania. Institute for Tumor Biology and Experimental Therapy; AlemaniaFil: Freitag, Nancy. Universitat Hamburg; Alemania. Max Delbruk Center For Molecular Medicine In The Helmholtz Association (mdc); Alemania. Charité Universitätsmedizin Berlin; AlemaniaFil: Cantero, María José. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Bayo Fina, Juan Miguel. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Mazzolini Rizzo, Guillermo Daniel. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Alaniz, Laura Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Blois, Sandra M.. Universitat Hamburg; AlemaniaFil: García, Mariana Gabriela. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentin

    Amyloid-related imaging abnormalities in the DIAN-TU-001 trial of gantenerumab and solanezumab: lessons from a trial in dominantly inherited Alzheimer disease

    Get PDF
    OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n=52), solanezumab IV (n=50), or placebo (n=40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, β-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (OR=9.1, CI[1.2, 412.3]; p=0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR=5.0, CI[1.0, 30.4]; p=0.055), as were individuals with microhemorrhage at baseline (OR=13.7, CI[1.2, 163.2]; p=0.039). No ARIA-E was observed at the initial 225mg/month gantenerumab dose, and most cases were observed at doses >675mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR>0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. This article is protected by copyright. All rights reserved

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease
    corecore