125 research outputs found

    Sex-specific stress-related behavioral phenotypes and central amygdala dysfunction in a mouse model of 16p11.2 microdeletion

    Get PDF
    Substantial evidence indicates that a microdeletion on human chromosome 16p11.2 is linked to neurodevelopmental disorders including autism spectrum disorders (ASD). Carriers of this deletion show divergent symptoms besides the core features of ASD, such as anxiety and emotional symptoms. The neural mechanisms underlying these symptoms are poorly understood. Here we report mice heterozygous for a deletion allele of the genomic region corresponding to the human 16p11.2 microdeletion locus (i.e., the ‘ 16p11.2 del /+ mice’) have sex-specific anxiety-related behavioral and neural circuit changes. We found that female, but not male 16p11.2 del /+ mice showed enhanced fear generalization – a hallmark of anxiety disorders – after auditory fear conditioning, and displayed increased anxiety-like behaviors after physical restraint stress. Notably, such sex-specific behavioral changes were paralleled by an increase in activity in central amygdala neurons projecting to the globus pallidus in female, but not male 16p11.2 del /+ mice. Together, these results reveal female-specific anxiety phenotypes related to 16p11.2 microdeletion syndrome and a potential underlying neural circuit mechanism. Our study therefore identifies previously underappreciated sex-specific behavioral and neural changes in a genetic model of 16p11.2 microdeletion syndrome, and highlights the importance of investigating female-specific aspects of this syndrome for targeted treatment strategies

    Opposing contributions of GABAergic and glutamatergic ventral pallidal neurons to motivational behaviours

    Get PDF
    ABSTRACT The ventral pallidum (VP) is critical for invigorating reward seeking and is also involved in punishment avoidance, but how it contributes to such opposing behavioural actions remains unclear. Here we show that GABAergic and glutamatergic VP neurons selectively control behaviour in opposing motivational contexts. In vivo recording combined with optogenetics in mice revealed that these two populations oppositely encode positive and negative motivational value, are differentially modulated by animal’s internal state and determine the behavioural response during motivational conflict. Furthermore, GABAergic VP neurons are essential for movements towards reward in a positive motivational context, but suppress movements in an aversive context. In contrast, glutamatergic VP neurons are essential for movements to avoid a threat but suppress movements in an appetitive context. Our results indicate that GABAergic and glutamatergic VP neurons encode the drive for approach and avoidance, respectively, with the balance between their activities determining the type of motivational behaviour

    Transforming Growth Factor β Promotes Neuronal Cell Fate of Mouse Cortical and Hippocampal Progenitors In Vitro and In Vivo: Identification of Nedd9 as an Essential Signaling Component

    Get PDF
    Transforming Growth Factor β (Tgfβ) and associated signaling effectors are expressed in the forebrain, but little is known about the role of this multifunctional cytokine during forebrain development. Using hippocampal and cortical primary cell cultures of developing mouse brains, this study identified Tgfβ-regulated genes not only associated with cell cycle exit of progenitors but also with adoption of neuronal cell fate. Accordingly, we observed not only an antimitotic effect of Tgfβ on progenitors but also an increased expression of neuronal markers in Tgfβ treated cultures. This effect was dependent upon Smad4. Furthermore, in vivo loss-of-function analyses using Tgfβ2−/−/Tgfβ3−/− double mutant mice showed the opposite effect of increased cell proliferation and fewer neurons in the cerebral cortex and hippocampus. Gata2, Runx1, and Nedd9 were candidate genes regulated by Tgfβ and known to be involved in developmental processes of neuronal progenitors. Using siRNA-mediated knockdown, we identified Nedd9 as an essential signaling component for the Tgfβ-dependent increase in neuronal cell fate. Expression of this scaffolding protein, which is mainly described as a signaling molecule of the β1-integrin pathway, was not only induced after Tgfβ treatment but was also associated with morphological changes of the Nestin-positive progenitor pool observed upon exposure to Tgfβ

    An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics

    Get PDF
    Accurate annotation of all protein-coding sequences (CDSs) is an essential prerequisite to fully exploit the rapidly growing repertoire of completely sequenced prokaryotic genomes. However, large discrepancies among the number of CDSs annotated by different resources, missed functional short open reading frames (sORFs), and overprediction of spurious ORFs represent serious limitations. Our strategy toward accurate and complete genome annotation consolidates CDSs from multiple reference annotation resources, ab initio gene prediction algorithms and in silico ORFs (a modified six-frame translation considering alternative start codons) in an integrated proteogenomics database (iPtgxDB) that covers the entire protein-coding potential of a prokaryotic genome. By extending the PeptideClassifier concept of unambiguous peptides for prokaryotes, close to 95% of the identifiable peptides imply one distinct protein, largely simplifying downstream analysis. Searching a comprehensive Bartonella henselae proteomics data set against such an iPtgxDB allowed us to unambiguously identify novel ORFs uniquely predicted by each resource, including lipoproteins, differentially expressed and membrane-localized proteins, novel start sites and wrongly annotated pseudogenes. Most novelties were confirmed by targeted, parallel reaction monitoring mass spectrometry, including unique ORFs and single amino acid variations (SAAVs) identified in a re-sequenced laboratory strain that are not present in its reference genome. We demonstrate the general applicability of our strategy for genomes with varying GC content and distinct taxonomic origin. We release iPtgxDBs for B. henselae, Bradyrhizobium diazoefficiens and Escherichia coli and the software to generate both proteogenomics search databases and integrated annotation files that can be viewed in a genome browser for any prokaryote

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO

    The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments.</p> <p>Results</p> <p>In this manuscript, we present the <it>Drosophila melanogaster </it>PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal <url>http://www.drosophila-peptideatlas.org</url> allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s) in which it was observed.</p> <p>Conclusion</p> <p>PeptideAtlas is an open access database for the <it>Drosophila </it>community that has several features and applications that support (1) reduction of the complexity inherently associated with performing targeted proteomic studies, (2) designing and accelerating shotgun proteomics experiments, (3) confirming or questioning gene models, and (4) adjusting gene models such that they are in line with observed <it>Drosophila </it>peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.</p

    Clustering of classical swine fever virus isolates by codon pair bias

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic code consists of non-random usage of synonymous codons for the same amino acids, termed codon bias or codon usage. Codon juxtaposition is also non-random, referred to as codon context bias or codon pair bias. The codon and codon pair bias vary among different organisms, as well as with viruses. Reasons for these differences are not completely understood. For classical swine fever virus (CSFV), it was suggested that the synonymous codon usage does not significantly influence virulence, but the relationship between variations in codon pair usage and CSFV virulence is unknown. Virulence can be related to the fitness of a virus: Differences in codon pair usage influence genome translation efficiency, which may in turn relate to the fitness of a virus. Accordingly, the potential of the codon pair bias for clustering CSFV isolates into classes of different virulence was investigated.</p> <p>Results</p> <p>The complete genomic sequences encoding the viral polyprotein of 52 different CSFV isolates were analyzed. This included 49 sequences from the GenBank database (NCBI) and three newly sequenced genomes. The codon usage did not differ among isolates of different virulence or genotype. In contrast, a clustering of isolates based on their codon pair bias was observed, clearly discriminating highly virulent isolates and vaccine strains on one side from moderately virulent strains on the other side. However, phylogenetic trees based on the codon pair bias and on the primary nucleotide sequence resulted in a very similar genotype distribution.</p> <p>Conclusion</p> <p>Clustering of CSFV genomes based on their codon pair bias correlate with the genotype rather than with the virulence of the isolates.</p
    corecore