442 research outputs found

    Photometry of the Globular Cluster NGC 5466: Red Giants and Blue Stragglers

    Full text link
    We present wide-field BVI photometry for about 11,500 stars in the low-metallicity cluster NGC 5466. We have detected the red giant branch bump for the first time, although it is at least 0.2 mag fainter than expected relative to the turnoff. The number of red giants (relative to main sequence turnoff stars) is in excellent agreement with stellar models from the Yonsei-Yale and Teramo groups, and slightly high compared to Victoria-Regina models. This adds to evidence that an abnormally large ratio of red giant to main-sequence stars is not correlated with cluster metallicity. We discuss theoretical predictions from different research groups and find that the inclusion or exclusion of helium diffusion and strong limit Coulomb interactions may be partly responsible. We also examine indicators of dynamical history: the mass function exponent and the blue straggler frequency. NGC 5466 has a very shallow mass function, consistent with large mass loss and recently-discovered tidal tails. The blue straggler sample is significantly more centrally concentrated than the HB or RGB stars. We see no evidence of an upturn in the blue straggler frequency at large distances from the center. Dynamical friction timescales indicate that the stragglers should be more concentrated if the cluster's present density structure has existed for most of its history. NGC 5466 also has an unusually low central density compared to clusters of similar luminosity. In spite of this, the specific frequency of blue stragglers that puts it right on the frequency -- cluster M_V relation observed for other clusters.Comment: 51 pages, 21 figures, 1 electronic table, accepted to Ap

    Planet Consumption and Stellar Metallicity Enhancements

    Full text link
    The evolution of a giant planet within the stellar envelope of a main-sequence star is investigated as a possible mechanism for enhancing the stellar metallicities of the parent stars of extrasolar planetary systems. Three-dimensional hydrodynamical simulations of a planet subject to impacting stellar matter indicate that the envelope of a Jupiter-like giant planet can be completely stripped in the outer stellar convection zone of a solar-mass star. In contrast, Jupiter-like and less massive Saturn-like giant planets are able to survive through the base of the convection zone of a 1.22 solar-mass star. Although strongly dependent on details of planetary interior models, partial or total dissolution of giant planets can result in significant enhancements in the metallicity of host stars with masses between about 1.0 and 1.3 solar masses. The implications of these results with regard to planetary orbital migration are briefly discussed.Comment: 11 pages, 2 figures, accepted for ApJ Letter

    Modelling Collision Products of Triple-Star Mergers

    Full text link
    In dense stellar clusters, binary-single and binary-binary encounters can ultimately lead to collisions involving two or more stars. A comprehensive survey of multi-star collisions would need to explore an enormous amount of parameter space, but here we focus on a number of representative cases involving low-mass main-sequence stars. Using both Smoothed Particle Hydrodynamics (SPH) calculations and a much faster fluid sorting software package (MMAS), we study scenarios in which a newly formed product from an initial collision collides with a third parent star. By varying the order in which the parent stars collide, as well as the orbital parameters of the collision trajectories, we investigate how factors such as shock heating affect the chemical composition and structure profiles of the collision product. Our simulations and models indicate that the distribution of most chemical elements within the final product is not significantly affected by the order in which the stars collide, the direction of approach of the third parent star, or the periastron separations of the collisions. We find that the sizes of the products, and hence their collisional cross sections for subsequent encounters, are sensitive to the order and geometry of the collisions. For the cases that we consider, the radius of the product formed in the first (single-single star) collision ranges anywhere from roughly 2 to 30 times the sum of the radii of its parent stars. The final product formed in our triple-star collisions can easily be as large or larger than a typical red giant. We therefore expect the collisional cross section of a newly formed product to be greatly enhanced over that of a thermally relaxed star of the same mass.Comment: 20 pages, submitted to MNRA

    Close binary stars in the solar-age Galactic open cluster M67

    Get PDF
    We present multi-colour time-series CCD photometry of the solar-age galactic open cluster M67 (NGC 2682). About 3600 frames spread over 28 nights were obtained with the 1.5 m Russian-Turkish and 1.2 m Mercator telescopes. High-precision observations of the close binary stars AH Cnc, EV Cnc, ES Cnc, the δ\delta Scuti type systems EX Cnc and EW Cnc, and some long-period variables belonging to M67 are presented. Three full multi-colour light curves of the overcontact binary AH Cnc were obtained during three observing seasons. Likewise we gathered three light curves of EV Cnc, an EB-type binary, and two light curves of ES Cnc, a blue straggler binary. Parts of the light change of long-term variables S1024, S1040, S1045, S1063, S1242, and S1264 are obtained. Period variation analysis of AH Cnc, EV Cnc, and ES Cnc were done using all times of mid-eclipse available in the literature and those obtained in this study. In addition, we analyzed multi-colour light curves of the close binaries and also determined new frequencies for the δ\delta Scuti systems. The physical parameters of the close binary stars were determined with simultaneous solutions of multi-colour light and radial velocity curves. Finally we determined the distance of M67 as 857(33) pc via binary star parameters, which is consistent with an independent method from earlier studies.Comment: 12 pages, 9 Figures, 13 Table

    Variable Stars in the Globular Cluster M5. Application of the Image Subtraction Method

    Get PDF
    We present VV-band light curves of 61 variables from the core of the globular cluster M5 obtained using a newly developed image subtraction method (ISM). Four of these variables were previously unknown. Only 26 variables were found in the same field using photometry obtained with DoPHOT software. Fourier parameters of the ISM light curves have relative errors up to 20 times smaller than parameters measured from DoPHOT photometry. We conclude that the new method is very promising for searching for variable stars in the cores of the globular clusters and gives very accurate relative photometry with quality comparable to photometry obtained by HST. We also show that the variable V104 is not an eclipsing star as has been suggested, but is an RRc star showing non-radial pulsations.Comment: submitted to MNRAS, 9 pages, 4 figure

    Search for giant planets in M67 I. Overview

    Full text link
    Precise stellar radial velocities are used to search for massive (Jupiter masses or higher) exoplanets around the stars of the open cluster M67. We aim to obtain a census of massive exoplanets in a cluster of solar metallicity and age in order to study the dependence of planet formation on stellar mass and to compare in detail the chemical composition of stars with and without planets. This first work presents the sample and the observations, discusses the cluster characteristics and the radial velocity (RV) distribution of the stars, and individuates the most likely planetary host candidates. We observed a total of 88 main-sequence stars, subgiants, and giants all highly probable members of M67, using four telescopes and instrument combinations. We investigate whether exoplanets are present by obtaining radial velocities with precisions as good as 10 m/s. To date, we have performed 680 single observations (Dec. 2011) and a preliminary analysis of data, spanning a period of up to eight years. Although the sample was pre-selected to avoid the inclusion of binaries, we identify 11 previously unknown binary candidates. Eleven stars clearly displayed larger RV variability and these are candidates to host long-term substellar companions. The average RV is also independent of the stellar magnitude and evolutionary status, confirming that the difference in gravitational redshift between giants and dwarfs is almost cancelled by the atmospheric motions. We use the subsample of solar-type stars to derive a precise true RV for this cluster. We finally create a catalog of binaries and use it to clean the color magnitude diagram (CMD). As conclusion, by pushing the search for planets to the faintest possible magnitudes, it is possible to observe solar analogues in open clusters, and we propose 11 candidates to host substellar companions.Comment: 11 pages, 10 figure

    Composition Mixing during Blue Straggler Formation and Evolution

    Get PDF
    We use smoothed-particle hydrodynamics to examine differences between direct collisions of single stars and binary star mergers in their roles as possible blue straggler star formation mechanisms. We find in all cases that core helium in the progenitor stars is largely retained in the core of the remnant, almost independent of the type of interaction or the central concentration of the progenitor stars. We have also modelled the subsequent evolution of the hydrostatic remnants, including mass loss and energy input from the hydrodynamical interaction. The combination of the hydrodynamical and hydrostatic models enables us to predict that little mixing will occur during the merger of two globular cluster stars of equal mass. In contrast to the results of Proctor Sills, Bailyn, & Demarque (1995), we find that neither completely mixed nor unmixed models can match the absolute colors of observed blue stragglers in NGC 6397 at all luminosity levels. We also find that the color distribution is probably the crucial test for explanations of BSS formation - if stellar collisions or mergers are the correct mechanisms, a large fraction of the lifetime of the straggler must be spent away from the main sequence. This constraint appears to rule out the possibility of completely mixed models. For NGC 6397, unmixed models predict blue straggler lifetimes ranging from about 0.1 to 4 Gyr, while completely mixed models predict a range from about 0.6 to 4 Gyr.Comment: AASTeX, 28 pg., accepted for ApJ, also available at http://ucowww.ucsc.edu/~erics/bspaper.htm

    Imaging the circumstellar envelopes of AGB stars

    Full text link
    We report the results of an exploratory program to image the extended circumstellar envelopes of asymptotic giant branch (AGB) stars in dust-scattered galactic light. The goal is to characterize the morphology of the envelopes as a probe of the mass-loss process. The observations consist of short exposures with the VLT and longer exposures with 1-2m telescopes, augmented with archival images from the Hubble Space Telescope. We observed 12 AGB stars and detected the circumstellar envelopes in 7. The detected envelopes have mass loss rates more than about 5 10E-6 solar mass per year, and they can be seen out to distances of about 1 kpc. The observations provide information on the mass loss history on time scales up to about 10,000 years. For the five AGB envelopes in which the circumstellar geometry is well determined by scattered light observations, all except one (OH348.2-19.7) show deviations from spherical symmetry. Two (IRC+10216 and IRC+10011) show roughly spherical envelopes at large radii but asymmetry or bipolarity close to the star; one (AFGL 2514) shows an extended, elliptical envelope, and one (AFGL 3068) shows a spiral pattern. The non-spherical structures are all consistent with the effects of binary interactions. Our observations are in accord with a scenario in which binary companions play a role in shaping planetary nebulae, and show that the circumstellar gas is already partly shaped on the AGB, before evolution to the proto-planetary nebula phase.Comment: Accepted by AA 21 Feb 2006; 18 pages, 14 figs; for high resolution images, contact mauron at graal.univ-montp2.f

    A CCD photometric study of the late type contact binary EK Comae Berenices

    Full text link
    We present CCD photometric observations of the W UMa type contact binary EK Comae Berenices using the 2 metre telescope of IUCAAIUCAA Girawali Observatory, India. The star was classified as a W UMa type binary of subtype-W by \citet{sam1996}. The new V band photometric observations of the star reveal that shape of the light curve has changed significantly from the one observed by \citet{sam1996}. A detailed analysis of the light curve obtained from the high-precision CCD photometric observations of the star indicates that EK Comae Berenices is not a W-type but an A-type totally eclipsing W UMa contact binary. The photometric mass ratio is determined to be 0.349 ±\pm 0.005. A temperature difference of ΔT=141±10\Delta T = 141 \pm 10 K between the components and an orbital inclination of i[o]=89.800±0.075i [^{o}] = 89.800 \pm 0.075 were obtained for the binary system. Absolute values of masses, radii and luminosities are estimated by means of the standard mass-luminosity relation for zero age main-sequence stars. The star shows O'Connell effect, asymmetries in the light curve shape around the primary and secondary maximum. The observed O'Connell effect is explained by the presence of a hot spot on the primary component.Comment: 26 pages, 9 figures, 5 tables. Accepted for publication in New Astronom

    Detection of solar-like oscillations in relics of the Milky Way: asteroseismology of K giants in M4 using data from the NASA K2 mission

    Get PDF
    Asteroseismic constraints on K giants make it possible to infer radii, masses and ages of tens of thousands of field stars. Tests against independent estimates of these properties are however scarce, especially in the metal-poor regime. Here, we report the detection of solar-like oscillations in 8 stars belonging to the red-giant branch and red-horizontal branch of the globular cluster M4. The detections were made in photometric observations from the K2 Mission during its Campaign 2. Making use of independent constraints on the distance, we estimate masses of the 8 stars by utilising different combinations of seismic and non-seismic inputs. When introducing a correction to the Delta nu scaling relation as suggested by stellar models, for RGB stars we find excellent agreement with the expected masses from isochrone fitting, and with a distance modulus derived using independent methods. The offset with respect to independent masses is lower, or comparable with, the uncertainties on the average RGB mass (4-10%, depending on the combination of constraints used). Our results lend confidence to asteroseismic masses in the metal poor regime. We note that a larger sample will be needed to allow more stringent tests to be made of systematic uncertainties in all the observables (both seismic and non-seismic), and to explore the properties of RHB stars, and of different populations in the cluster.Comment: 6 pages, 3 figures, accepted for publication in MNRA
    corecore