261 research outputs found

    Supraspinal inactivation of mitochondrial superoxide dismutase is a source of peroxynitrite in the development of morphine antinociceptive tolerance.

    Get PDF
    Effective treatment of chronic pain with morphine is limited by decreases in the drug’s analgesic action with chronic administration (antinociceptive tolerance). Because opioids are mainstays of pain management, restoring their efficacy has great clinical importance. We have recently reported that formation of peroxynitrite (ONOO(−), PN) in the dorsal horn of the spinal cord plays a critical role in the development of morphine antinociceptive tolerance and have further documented that nitration and enzymatic inactivation of mitochondrial superoxide dismutase (MnSOD) at that site provides a source for this nitroxidative species. We now report for the first time that antinociceptive tolerance is also associated with the inactivation of MnSOD at supraspinal sites. Inactivation of MnSOD led to nitroxidative stress as evidenced by increased levels of products of oxidative DNA damage and activation of the nuclear factor poly (ADP-ribose) polymerase in whole brain homogenates. Co-administration of morphine with potent Mn porphyrin-based peroxynitrite scavengers, (MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+)) (1) restored the enzymatic activity of MnSOD, (2) attenuated PN derived nitroxidative stress, and (3) blocked the development of morphine induced antinociceptive tolerance. The more lipophilic analogue, MnTnHex-2-PyP(5+) was able to cross the blood brain barrier at higher levels than its lipophylic counterpart MnTE-2-PyP(5+) and was about 30 fold more efficacious. Collectively, these data suggest that peroxynitrite mediated enzymatic inactivation of supraspinal MnSOD provides a source of nitroxidative stress, which in turn contributes to central sensitization associated with the development of morphine antinociceptive tolerance. These results support our general contention that PN-targeted therapeutics may have potential as adjuncts to opiates in pain management

    CPO and quantitative textural analyses within sheath folds

    Get PDF
    Acknowledgments This has been a multi-national collaboration from authors based in Europe, North America, Australia and India. Erasmus funding to GIA in 2018 enabled a visit to Catania leading to discussion and initiation of this project. The authors are grateful to Amarnath Dandapat for preparation of superpolished rock thin sections at the Department of Geology and Geophysics (IIT Kharagpur, India). Niloy Bhowmik is thanked for assistance with SEM-EBSD data generation in the Central Research Facility (IIT Kharagpur, India). E.F. thanks Sibio Carmelo for thin sections preparation at the University of Turin (Italy). Authors are grateful to ANSTO laboratory personnel for the preparation of specimens (funded proposals: P9835 with the title “Sheath fold texture characterisation”, principal scientist: E.F.; co-proposers: G.I.A. and V.L.; DB6749 with the title “Texture analysis of rocks”, principal scientist: V.L.; co-proposer: E.F.; DB9606 with the title “A pilot experiment for texture characterisation in a sheath fold”, principal scientist: E.F..; co-proposers: G.I.A. and V.L.). L.N. and R.G. report that this publication has been assigned the NRCan contribution number 20230109. Many thanks to Richard D. Law and an anonymous reviewer for their careful revision that substantially improved the original version of the manuscript. We also thanks Dr. T.K. Cawood from the Geological Survey of Canada for her useful comments on the drafted manuscript. The editorial handling by Fabrizio Agosta is greatly appreciated.Peer reviewedPublisher PD

    Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Get PDF
    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-gamma), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS(+/+)) or from iNOS knockout mice (iNOS(-/-)). We found an impairment of NSC cell proliferation in iNOS(+/+) mixed cultures, which was not observed in iNOS(-/-) mixed cultures. Furthermore, the increased release of NO by activated iNOS(+/+) microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO-), or using the ONOO- degradation catalyst FeTMPyP cell proliferation and ERK signaling were restored to basal levels in iNOS(+/+) mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 mu M), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the ERK/MAPK pathway.Foundation for Science and Technology, (FCT, Portugal); COMPETE; FEDER [PEst-C/SAU/LA0001/2013-2014, PEst-OE/EQB/LA0023/2013-2014, PTDC/SAU-NEU/102612/2008, PTDC/NEU-OSD/0473/2012]; FCT, Portugal [SERH/BPD/78901/2011, SERH/BD/38127/2007, SFRH/BD/77903/2011, SFRH/BD/79308/2011]info:eu-repo/semantics/publishedVersio

    Foreign Policy and the Ideology of Post-ideology: The Case of Matteo Renzi’s Partito Democratico

    Get PDF
    The post-communist Italian Left has experienced a long phase of ideational misalignment between ideas placed at different levels, as a qualified discursive institutionalist approach demonstrates. Background public philosophies have often clashed with post-communist political ideology, while foreign policy programmes have often contradicted specific policies. Under the leadership of Matteo Renzi, however, the PD is now experiencing a moment of remarkable ideational consistency. Rather than being founded on entirely new premises, this new consensus folds old elements into new ones and shows all the defining traits of post-ideology. Yet, by espousing post-ideology, Renzi is making an ultimately ideological move whose limitations may soon start to show

    The role of morphine in regulation of cancer cell growth

    Get PDF
    Morphine is considered the “gold standard” for relieving pain and is currently one of the most effective drugs available clinically for the management of severe pain associated with cancer. In addition to its use in the treatment of pain, morphine appears to be important in the regulation of neoplastic tissue. Although morphine acts directly on the central nervous system to relieve pain, its activities on peripheral tissues are responsible for many of the secondary complications. Therefore, understanding the impact, other than pain control, of morphine on cancer treatment is extremely important. The effect of morphine on tumor growth is still contradictory, as both growth-promoting and growth-inhibiting effects have been observed. Accumulating evidence suggests that morphine can affect proliferation and migration of tumor cells as well as angiogenesis. Various signaling pathways have been suggested to be involved in these extra-analgesic effects of morphine. Suppression of immune system by morphine is an additional complication. This review provides an update on the influence of morphine on the growth and migration potential of tumor cells

    Toolkit for the indicators of resilience in socio-ecological production landscapes and seascapes

    Get PDF
    This toolkit provides practical guidance for making use of the “Indicators of Resilience in Socio-ecological Production Landscapes and Seascapes (SEPLS)” in the field. The indicators are a tool for engaging local communities in adaptive management of the landscapes and seascapes in which they live. By using the tested methods presented in this toolkit, communities can increase their capacity to respond to social, economic, and environmental pressures and shocks, to improve their environmental and economic conditions, thus increasing the social and ecological resilience of their landscapes and seascapes, and ultimately make progress towards realizing a society in harmony with nature. The approach presented here is centred on holding participatory “assessment workshops”. These involve discussion and a scoring process for the set of twenty indicators designed to capture communities’ perceptions of factors affecting the resilience of their landscapes and seascapes. The participants in these workshops are members of the local community and stakeholders in the local area. Their participation allows them to evaluate current conditions across the landscape and identify and reach agreement on priority actions, contributing to enhanced communication among stakeholders and empowered local communities. Workshops may be planned and implemented by people from within or outside the community. The guidance provided in this toolkit is primarily intended for organizers and facilitators of resilience assessment workshops

    Anti-Neuroinflammatory effects of the extract of Achillea fragrantissima

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The neuroinflammatory process plays a central role in the initiation and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases, and involves the activation of brain microglial cells. During the neuroinflammatory process, microglial cells release proinflammatory mediators such as cytokines, matrix metalloproteinases (MMP), Reactive oxygen species (ROS) and nitric oxide (NO). In the present study, extracts from 66 different desert plants were tested for their effect on lipopolysaccharide (LPS) - induced production of NO by primary microglial cells. The extract of <it>Achillea fragrantissima </it>(<it>Af</it>)<it/>, which is a desert plant that has been used for many years in traditional medicine for the treatment of various diseases, was the most efficient extract, and was further studied for additional anti-neuroinflammatory effects in these cells.</p> <p>Methods</p> <p>In the present study, the ethanolic extract prepared from <it>Af </it>was tested for its anti-inflammatory effects on lipopolysaccharide (LPS)-activated primary cultures of brain microglial cells. The levels of the proinflammatory cytokines interleukin1β (IL-1β) and tumor necrosis factor-ι (TNFι) secreted by the cells were determined by reverse transcriptase-PCR and Enzyme-linked immunosorbent assay (ELISA), respectively. NO levels secreted by the activate cells were measured using Griess reagent, ROS levels were measured by 2'7'-dichlorofluorescein diacetate (DCF-DA), MMP-9 activity was measured using gel zymography, and the protein levels of the proinflammatory enzymes cyclooxygenase-2 (COX-2) and induced nitric oxide synthase (iNOS) were measured by Western blot analysis. Cell viability was assessed using Lactate dehydrogenase (LDH) activity in the media conditioned by the cells or by the crystal violet cell staining.</p> <p>Results</p> <p>We have found that out of the 66 desert plants tested, the extract of <it>Af </it>was the most efficient extract and inhibited ~70% of the NO produced by the LPS-activated microglial cells, without affecting cell viability. In addition, this extract inhibited the LPS - elicited expression of the proinflammatory mediators IL-1β, TNFι, MMP-9, COX-2 and iNOS in these cells.</p> <p>Conclusions</p> <p>Thus, phytochemicals present in the <it>Af </it>extract could be beneficial in preventing/treating neurodegenerative diseases in which neuroinflammation is part of the pathophysiology.</p

    Enterocyte Shedding and Epithelial Lining Repair Following Ischemia of the Human Small Intestine Attenuate Inflammation

    Get PDF
    BACKGROUND: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut. METHODS AND FINDINGS: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1alpha gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue. CONCLUSIONS: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group

    Human eosinophil adhesion and degranulation stimulated with eotaxin and RANTES in vitro: Lack of interaction with nitric oxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils.</p> <p>Methods</p> <p>Eosinophils were purified using a percoll gradient followed by immunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry.</p> <p>Results</p> <p>At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils.</p> <p>Conclusion</p> <p>Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion.</p

    Inhibition or knock out of Inducible nitric oxide synthase result in resistance to bleomycin-induced lung injury

    Get PDF
    BACKGROUND: In the present study, by comparing the responses in wild-type mice (WT) and mice lacking (KO) the inducible (or type 2) nitric oxide synthase (iNOS), we investigated the role played by iNOS in the development of on the lung injury caused by bleomycin administration. When compared to bleomycin-treated iNOSWT mice, iNOSKO mice, which had received bleomycin, exhibited a reduced degree of the (i) lost of body weight, (ii) mortality rate, (iii) infiltration of the lung with polymorphonuclear neutrophils (MPO activity), (iv) edema formation, (v) histological evidence of lung injury, (vi) lung collagen deposition and (vii) lung Transforming Growth Factor beta1 (TGF-β1) expression. METHODS: Mice subjected to intratracheal administration of bleomycin developed a significant lung injury. Immunohistochemical analysis for nitrotyrosine revealed a positive staining in lungs from bleomycin-treated iNOSWT mice. RESULTS: The intensity and degree of nitrotyrosine staining was markedly reduced in tissue section from bleomycin-iNOSKO mice. Treatment of iNOSWT mice with of GW274150, a novel, potent and selective inhibitor of iNOS activity (5 mg/kg i.p.) also significantly attenuated all of the above indicators of lung damage and inflammation. CONCLUSION: Taken together, our results clearly demonstrate that iNOS plays an important role in the lung injury induced by bleomycin in the mice
    • …
    corecore