1,294 research outputs found

    Polaron formation for a non-local electron-phonon coupling: A variational wave-function study

    Full text link
    We introduce a variational wave-function to study the polaron formation when the electronic transfer integral depends on the relative displacement between nearest-neighbor sites giving rise to a non-local electron-phonon coupling with optical phonon modes. We analyze the ground state properties such as the energy, the electron-lattice correlation function, the phonon number and the spectral weight. Variational results are found in good agreement with analytic weak-coupling perturbative calculations and exact numerical diagonalization of small clusters. We determine the polaronic phase diagram and we find that the tendency towards strong localization is hindered from the pathological sign change of the effective next-nearest-neighbor hopping.Comment: 11 page

    Gamma-Ray Luminosity Function of Blazars and the Cosmic Gamma-Ray Background: Evidence for the Luminosity Dependent Density Evolution

    Full text link
    We present a comprehensive study for the gamma-ray luminosity function (GLF) of blazars and their contribution to the extragalactic diffuse gamma-ray background (EGRB). Radio and gamma-ray luminosity correlation is introduced to take into account the radio detectability which is important for the blazar identification. Previous studies considered only pure luminosity evolution (PLE) or pure density evolution, but we introduce the luminosity dependent density evolution (LDDE) model, which is favored from the evolution of X-ray luminosity function (XLF) of AGNs. The model parameters are constrained by likelihood analyses about the observed redshift and gamma-ray flux distributions of the EGRET blazars. We find that the LDDE model gives a better fit to the observed distributions than the PLE model, indicating that the LDDE model is also appropriate for gamma-ray blazars, and that the jet activity is universally correlated with the accretion history of AGNs. The normalization between the GLF and XLF is consistent with the unified picture of AGNs, when the beaming and a reasonable duty cycle of jet activity are taken into account. We then find that only 25--50% of the EGRB can be explained by unresolved blazars with the best-fit LDDE parameters. Unresolved blazars can account for all the EGRB only with a steeper index of the faint-end slope of the GLF, which is marginally consistent with the EGRET data but inconsistent with that of the XLF. Therefore unresolved AGNs cannot be the dominant source of the EGRB, unless there is a new population of gamma-ray emitting AGNs that evolves differently from the XLF of AGNs. Predictions for the GLAST mission are made, and we find that the best-fit LDDE model predicts about 3000 blazars in the entire sky, which is considerably fewer than a previous estimate.Comment: 13 pages, 12 figures, accepted by ApJ; minor typos corrected and some figures revised, main conclusions essentially unchange

    Circulating miR-184 is a potential predictive biomarker of cardiac damage in Anderson–Fabry disease

    Get PDF
    open21noFunding: This work was supported by the Italian Ministry of Health (PE-2013-02356818) to GCEnzyme replacement therapy (ERT) is a mainstay of treatment for Anderson–Fabry disease (AFD), a pathology with negative effects on the heart and kidneys. However, no reliable biomarkers are available to monitor its efficacy. Therefore, we tested a panel of four microRNAs linked with cardiac and renal damage in order to identify a novel biomarker associated with AFD and modulated by ERT. To this end, 60 patients with a definite diagnosis of AFD and on chronic ERT, and 29 age- and sex-matched healthy individuals, were enrolled by two Italian university hospitals. Only miR-184 met both conditions: its level discriminated untreated AFD patients from healthy individuals (c-statistic = 0.7522), and it was upregulated upon ERT (P < 0.001). On multivariable analysis, miR-184 was independently and inversely associated with a higher risk of cardiac damage (odds ratio = 0.86; 95% confidence interval [CI] = 0.76–0.98; P = 0.026). Adding miR-184 to a comprehensive clinical model improved the prediction of cardiac damage in terms of global model fit, calibration, discrimination, and classification accuracy (continuous net reclassification improvement = 0.917, P < 0.001; integrated discrimination improvement [IDI] = 0.105, P = 0.017; relative IDI = 0.221, 95% CI = 0.002–0.356). Thus, miR-184 is a circulating biomarker of AFD that changes after ERT. Assessment of its level in plasma could be clinically valuable in improving the prediction of cardiac damage in AFD patients.openSalamon I.; Biagini E.; Kunderfranco P.; Roncarati R.; Ferracin M.; Taglieri N.; Nardi E.; Laprovitera N.; Tomasi L.; Santostefano M.; Ditaranto R.; Vitale G.; Cavarretta E.; Pisani A.; Riccio E.; Aiello V.; Capelli I.; La Manna G.; Galie N.; Spinelli L.; Condorelli G.Salamon I.; Biagini E.; Kunderfranco P.; Roncarati R.; Ferracin M.; Taglieri N.; Nardi E.; Laprovitera N.; Tomasi L.; Santostefano M.; Ditaranto R.; Vitale G.; Cavarretta E.; Pisani A.; Riccio E.; Aiello V.; Capelli I.; La Manna G.; Galie N.; Spinelli L.; Condorelli G

    Molecular Plasticity of E-Cadherin and Sialyl Lewis X Expression, in Two Comparative Models of Mammary Tumorigenesis

    Get PDF
    The process of metastasis involves a series of steps and interactions between the tumor embolus and the microenvironment. Key alterations in adhesion molecules are known to dictate progression from the invasive to malignant phenotype followed by colonization at a distant site. The invasive phenotype results from the loss of expression of the E-cadherin adhesion molecule, whereas the malignant phenotype is associated with an increased expression of the carbohydrate ligand-binding epitopes, (e.g. Sialyl Lewis (x/a)) that bind endothelial E-selectin of the lymphatics and vasculature.Our study analyzed the expression of two adhesion molecules, E-cadherin and Sialyl Lewis x (sLe(x)), in both a canine mammary carcinoma and human inflammatory breast cancer (IBC) model, using double labelled immunofluorescence staining.Our results demonstrate that canine mammary carcinoma and human IBC exhibit an inversely correlated cellular expression of E-cadherin and sLe(x) within the same tumor embolus.Our results in these two comparative models (canine and human) suggest the existence of a biologically coordinated mechanism of E-cadherin and sLe(x) expression (i.e. molecular plasticity) essential for tumor establishment and metastatic progression

    Numerical Monte Carlo analysis of the influence of pore-scale dispersion on macrodispersion in 2-D heterogeneous porous media

    No full text
    9 p.International audienceWe investigate the influences of pore‐scale dispersion and of larger‐scale permeabilityheterogeneities on the macrodispersion without the molecular diffusion. Permeability followsa lognormal exponentially correlated distribution characterized by its correlation length land its lognormal variance s2. Macrodispersion is evaluated numerically by usingparallel simulations on grids of characteristic size ranging from 200l to 1600l. We noteaLand aTthe pore‐scale longitudinal and transversal dispersivities. For aL/l <10−2andaT/l <10−3, the influence of pore‐scale dispersion on the macrodispersion is smaller than5% of the macrodispersion due only to permeability heterogeneitie

    Recurrence of Diabetic Pedal Ulcerations Following Tendo-Achilles Lengthening

    Get PDF
    Foot and ankle surgeons are frequently challenged by the devastating systemic consequences of diabetes mellitus manifested through neuropathy, integumentary and joint breakdown, delayed healing, decreased ability to fight infection, and fragile tendon/ligaments. Diabetic neuropathic pedal ulcerations lead to amputations at an alarming rate and also carry a high mortality rate. This article will discuss causes of diabetic pedal ulcerations that persist or recur after tendo-Achilles lengthening and will highlight areas that need to be addressed by the practitioner such as infection, vascular and nutritional status, glucose control, off-loading, biomechanics, and patient compliance

    Space food experiences: designing passenger's eating experiences for future space travel scenarios

    Get PDF
    Given the increasing possibilities of short- and long-term space travel to the Moon and Mars, it is essential not only to design nutritious foods but also to make eating an enjoyable experience. To date, though, perhaps unsurprisingly, most research on space food design has emphasized the functional and nutritional aspects of food, and there are no systematic studies that focus on the human experience of eating in space. It is known, however, that food has a multi-dimensional and multi-sensorial role in societies and that sensory, hedonic, and social features of eating and food design should not be underestimated. Here, we present how research in the field of Human-Computer Interaction (HCI) can provide a user-centered design approach to co-create innovative ideas around the future of food and eating in space, balancing functional and experiential factors. Based on our research and inspired by advances in human-food interaction design, we have developed three design concepts that integrate and tackle the functional, sensorial, emotional, social, and environmental/atmospheric aspects of “eating experiences in space.” We can particularly capitalize on recent technological advances around digital fabrication, 3D food printing technology, and virtual and augmented reality to enable the design and integration of multisensory eating experiences. We also highlight that in future space travel, the target users will diversify. In relation to such future users, we need to consider not only astronauts (current users, paid to do the job) but also paying customers (non-astronauts) who will be able to book a space holiday to the Moon or Mars. To create the right conditions for space travel and satisfy those users, we need to innovate beyond the initial excitement of designing an “eating like an astronaut” experience. To do so we carried out a three-stage research and design process: (1) first we collected data on users imaginary of eating in space through an online survey (n = 215) to conceptualize eating experiences for short- and long-term space flights (i.e., Moon, Mars); then (2) we iteratively created three design concepts, and finally (3) asked experts in the field for their feedback on our designs. We discuss our results in the context of the wider multisensory experience design and research space

    Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids

    Get PDF
    Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent. The mechanisms involved in all these processes are quite controversial.In this article, we report spectroscopic, calorimetric and biochemical data on the penetratin interaction with three different phospholipids: phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG) to mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates vesicles, increases membrane rigidity and acquires an α-helical structure. With PG membranes, penetratin does not aggregate vesicles but decreases membrane fluidity and acquires a structure with both α-helical and β–sheet contributions.These data from membrane models suggest that the different penetratin actions in eukaryotic cells (membrane translocation during export and import) and on prokaryotes may result from different peptide and lipid structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical secondary structure but requires a different conformation compared to that in solution

    Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci

    Get PDF
    Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients
    corecore