82 research outputs found

    Redes de Interacción Ecológicas: Balance y Frustración en Redes Complejas con Signo.

    Get PDF
    En ecología se han estudiado las interacciones entre los miembros de un ecosistema estableciendo las relaciones entre las especies que lo forman. El conjunto de relaciones se codifica en una red compleja donde los nodos son las especies y los links entre los nodos codifican diferentes tipos de interacción. En este trabajo consideramos especies vegetales cuyas interacciones pueden ser positivas (favorecedoras), negativas (competitivas) o neutras. Nuestro interés radica en estudiar el balance estructural de estas redes comparándolo con el balance estructural de redes equivalentes generadas al azar. El objetivo es entender y cuantificar cómo las redes observadas han evolucionado hacia estructuras con un balance casi óptimo lo cual las convierte en sistemas robustos y adaptables

    The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands

    Get PDF
    Grazing by domestic livestock is both the main land use across drylands worldwide and a major desertification and global change driver. The ecological consequences of this key human activity have been studied for decades, and there is a wealth of information on its impacts on biodiversity and ecosystem processes. However, most field assessments of the ecological impacts of grazing on drylands conducted to date have been carried out at local or regional scales and have focused on single ecosystem attributes (e.g., plant productivity) or particular taxa (mainly aboveground, e.g., plants). Here we introduce the BIODESERT survey, the first systematic field survey devoted to evaluating the joint impacts of grazing by domestic livestock and climate on the structure and functioning of dryland ecosystems worldwide. This collaborative global survey was carried out between 2016 and 2019 and has involved the collection of field data and plant, biocrust, and soil samples from a total of 326 45 m × 45 m plots from 98 sites located in 25 countries from 6 continents. Here we describe the major characteristics and the field protocols used in this survey. We also introduce the organizational aspects followed, as these can be helpful to everyone wishing to establish a global collaborative network of researchers. The BIODESERT survey provides baseline data to assess the current status of dryland rangelands worldwide and the impacts of grazing on these key ecosystems, and it constitutes a good example of the power of collaborative research networks to study the ecology of our planet using much-needed field data.This research has been supported by the European Research Council (ERC grant agreement no. 647038 – BIODESERT) and the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana (grant no. CIDEGENT/2018/041). Nicolas Gross was supported by CAP 20-25 (16-IDEX-0001) and the AgreenSkills+ fellowship program which has received funding from the EU's Seventh Framework Programme under grant agreement no. 996 FP7-609398 (AgreenSkills+ contract). Hugo Saiz is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union Next Generation plan

    Global ecosystem thresholds driven by aridity

    Get PDF
    Aridity, which is increasing worldwide because of climate change, affects the structure and functioning of dryland ecosystems. Whether aridification leads to gradual (versus abrupt) and systemic (versus specific) ecosystem changes is largely unknown. We investigated how 20 structural and functional ecosystem attributes respond to aridity in global drylands. Aridification led to systemic and abrupt changes in multiple ecosystem attributes. These changes occurred sequentially in three phases characterized by abrupt decays in plant productivity, soil fertility, and plant cover and richness at aridity values of 0.54, 0.7, and 0.8, respectively. More than 20% of the terrestrial surface will cross one or several of these thresholds by 2100, which calls for immediate actions to minimize the negative impacts of aridification on essential ecosystem services for the more than 2 billion people living in drylands.This research was supported by the European Research Council [ERC grant nos. 242658 (BIOCOM) and 647038 (BIODESERT) awarded to F.T.M.]. M.B. acknowledges support from a Juan de la Cierva Formación grant from the Spanish Ministry of Economy and Competitiveness (FJCI-2018-036520-I). F.T.M. acknowledges support from Generalitat Valenciana (CIDEGENT/2018/041), the Alexander von Humboldt Foundation, and the Synthesis Centre for Biodiversity Sciences (sDiv) of the German Centre for Integrative Biodiversity Research (iDiv). M.D.-B. acknowledges support from the Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Program H2020-MSCA-IF-2016 under REA grant no. 702057. S.S. was supported by the Spanish Government under a Ramón y Cajal contract (RYC-2016- 20604). N.G. was supported by the AgreenSkills+ fellowship program, which has received funding from the EU’s Seventh Framework Programme under grant no. FP7-609398 (AgreenSkills+ contract). V.M. was supported by FRQNT-2017-NC-198009 and NSERC Discovery 2016-05716 grants from the government of Canada. H.S. was supported by a Juan de la Cierva Formación grant from the Spanish Ministry of Economy and Competitiveness (FJCI-2015-26782). A.L. and M.C.R. were supported by an ERC Advanced Grant (Gradual Change grant no. 694368) and by the Deutsche Forschungsgesellschaft (grant no. RI 1815/16-1). Y.Z. was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA19030500)

    Functional rarity and evenness are key facets of biodiversity to boost multifunctionality

    Get PDF
    The functional traits of organisms within multispecies assemblages regulate biodiversity effects on ecosystem functioning. Yet how traits should assemble to boost multiple ecosystem functions simultaneously (multifunctionality) remains poorly explored. In a multibiome litter experiment covering most of the global variation in leaf trait spectra, we showed that three dimensions of functional diversity (dispersion, rarity, and evenness) explained up to 66% of variations in multifunctionality, although the dominant species and their traits remained an important predictor. While high dispersion impeded multifunctionality, increasing the evenness among functionally dissimilar species was a key dimension to promote higher multifunctionality and to reduce the abundance of plant pathogens. Because too-dissimilar species could have negative effects on ecosystems, our results highlight the need for not only diverse but also functionally even assemblages to promote multifunctionality. The effect of functionally rare species strongly shifted from positive to negative depending on their trait differences with the dominant species. Simultaneously managing the dispersion, evenness, and rarity in multispecies assemblages could be used to design assemblages aimed at maximizing multifunctionality independently of the biome, the identity of dominant species, or the range of trait values considered. Functional evenness and rarity offer promise to improve the management of terrestrial ecosystems and to limit plant disease risks.This work was funded by the British Ecological Society (SR17\1297 grant, PI: P.G.-P.) and by the European Research Council (ERC Grant Agreement #647038, BIODESERT, PI: F.T.M.). Y.L.B.-P. was supported by a Marie Sklodowska-Curie Actions Individual Fellowship within the European Program Horizon 2020 (DRYFUN Project #656035). H.S. was supported by a Juan de la Cierva-Formación grant from the Spanish Ministry of Economy and Competitiveness (FJCI-2015-26782). F.T.M. and S.A. were supported from the Generalitat Valenciana (CIDEGENT/2018/041). M.D. was supported by a Formación del Profesorado Universitario (FPU) fellowship from the Spanish Ministry of Education, Culture and Sports (FPU-15/00392). S.A. was supported by the Spanish MINECO for financial support via the DIGGING_DEEPER project through the 2015 to 2016 BiodivERsA3/FACCE‐JPI joint call for research proposals. B.K.S. research on biodiversity-ecosystem functions was supported by the Australian Research Council (DP170104634 and DP190103714). P.G.-P. was supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-024766-I). R.M. was supported by MINECO (Grants CGL2014-56567-R and CGL2017-83855-R)

    Diffusion-based structural connectivity patterns of multiple sclerosis phenotypes

    Get PDF
    BACKGROUND: We aimed to describe the severity of the changes in brain diffusion-based connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of these networks that are associated with distinct MS phenotypes. METHODS: Clinical information and brain MRIs were collected from 221 healthy individuals and 823 people with MS at 8 MAGNIMS centres. The patients were divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, secondary progressive and primary progressive. Advanced tractography methods were used to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived measures, and in the fractional anisotropy of connections between groups were analysed. Support vector machine algorithms were used to classify groups. RESULTS: Clinically isolated syndrome and relapsing-remitting patients shared similar network changes relative to controls. However, most global and local network properties differed in secondary progressive patients compared with the other groups, with lower fractional anisotropy in most connections. Primary progressive participants had fewer differences in global and local graph measures compared with clinically isolated syndrome and relapsing-remitting patients, and reductions in fractional anisotropy were only evident for a few connections. The accuracy of support vector machine to discriminate patients from healthy controls based on connection was 81%, and ranged between 64% and 74% in distinguishing among the clinical phenotypes. CONCLUSIONS: In conclusion, brain connectivity is disrupted in MS and has differential patterns according to the phenotype. Secondary progressive is associated with more widespread changes in connectivity. Additionally, classification tasks can distinguish between MS types, with subcortical connections being the most important factor

    New insights from multidimensional trait space responses to competition in two clonal plant species

    No full text
    International audience1. Trait intraspecific variability determines community dynamics and species coexistence. In response to competition, plants can display intraspecific variability to enhance their competitive ability or stabilise their niche differences with competitors. This response is multidimensional because it involves changes along different functional axes and inevitable trade‐offs between traits. Here, we transposed the recent concept of the multidimensional trait space to the analysis of intraspecific plant response to competition. We specifically tested the following: (a) in the absence of competitors, the plant multidimensional trait space will be packed towards strategies promoting plant colonisation; and (b) with competitors, the plant multidimensional trait space will be directed towards competition with its size and shaping characteristics dependent on competitor species richness.2. We studied trait intraspecific variability of two clonal species, Brachypodium pinnatum (L.) P. Beauv. and Elytrigia repens (L.) Gould, in response to competition. We analysed plant response in the absence of competitors and in competition. Competition treatments included intraspecific and interspecific experimental mixtures with increasing species richness. For each target species and each treatment, we built an hypervolume based on six traits involved in the three‐dimensional competition (i.e., ramet and connection traits). We measured these hypervolumes for their size, similarity and the contribution of traits in their shaping.3. In the absence of competitors and for both species, we demonstrated a multidimensional trait space packing towards a colonisation strategy. Under competition, the multidimensional trait spaces of the two target species were the widest at the extremes of the richness gradient, that is, intraspecific and interspecific high richness competition treatments. High intraspecific variability either promoted niche differentiation from individuals of similar species or reflected the large range of competitive responses deployed when plants were faced with many different competitor identities. The multidimensional response process was based on fine adjustments of various traits depending on the surrounding neighbourhood composition and more specifically, on the competitor functional similarity with the target species.4. This study emphasises the multidimensionality of species competitive response, and also underlines the so far neglected importance of competitor species richness for trait intraspecific variability and subsequently community assembly
    corecore