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Abstract:  

Aridity, increasing worldwide due to climate change, affects the structure and functioning of 

dryland ecosystems. Whether aridification leads to gradual (vs. abrupt) and systemic (vs. specific) 

ecosystem changes is largely unknown. We investigated how 20 structural and functional 

ecosystem attributes respond to aridity in global drylands. Aridification led to systemic and abrupt 5 

changes in multiple ecosystem attributes. These changes occurred sequentially in three phases 

characterized by abrupt decays in plant productivity, soil fertility and plant cover/richness at aridity 

values of 0.54, 0.7 and 0.8, respectively. Over 20% of the terrestrial surface will cross one/several 

of these thresholds by 2100, which calls for immediate actions to minimize the negative impacts 

of aridification on essential ecosystem services for the more than 2.5 billion people living in 10 

drylands. 

One Sentence Summary: Increasing aridity promotes sequential, systemic and abrupt 

thresholds in dryland ecosystems. 
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Main Text:  

Drylands, areas where rainfall is below 65% of evaporative demand (1), cover ~45% of emerged 

lands (2) and are especially vulnerable to climate change and land degradation (3, 4). Increasing 

aridity (1 – [precipitation/potential evapotranspiration]) is major imprint of climate change in 

global drylands (3) and will impact multiple ecosystem structural and functional attributes (e.g., 5 

nutrient cycling, plant productivity, and microbial communities, 5). However, it remains to be 

elucidated whether these impacts will be gradual or abrupt (5–7). Recent research (1, 8) has shown 

abrupt losses of soil nutrient availability in the transition between semiarid and arid ecosystems 

(aridity levels ~ 0.7). Likewise, modelling studies have predicted the existence of single thresholds 

in particular structural attributes, such as vegetation cover or spatial pattern, along climatic 10 

gradients (9). Whether non-linear responses of ecosystem attributes to increases in aridity are the 

norm rather than the exception, and whether these responses exhibit single or multiple thresholds 

remain largely unknown. Ecosystem attributes are highly interconnected (5, 10, 11); therefore, 

changes in a given attribute induced by increases in aridity may trigger sequential changes in others 

that depend on it but work at different spatial (12) or temporal (10) scales. If these interconnected 15 

changes are abrupt, this could potentially result in a series of aridity thresholds affecting multiple 

ecosystem attributes. For instance, increasing aridity may cause a rapid shift in the composition of 

soil microbes, which in turn may trigger changes in plant-microbial interactions that later lead to 

changes in nutrient cycling and plant community composition (13). Therefore, understanding 

whether the inter-related responses of multiple ecosystem attributes to increasing aridity cancel 20 

each other out, buffering the negative impacts of climate change, or if they are characterized by 

one or multiple sequential ecosystemic thresholds that amplify them is crucial for improving 

forecasts of ecosystem responses to climate change. This information is also critical to depict 
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vulnerabilities in global drylands and to forecast the provision of ecosystem services, maintaining 

the more than 2.8 billion people that inhabit these areas worldwide, particularly in developing 

countries (4). 

Herein we evaluated whether: (i) multiple ecosystem structural and functional attributes exhibit 

linear or non-linear responses to increases in aridity; and (ii) these responses are driven by the 5 

existence of single or multiple thresholds in global drylands. To do so, we compiled >50,000 data 

points that spanned multiple biological organization levels (from individuals to ecosystems) and 

global datasets, including standardized laboratory measurements, field surveys, map interpolations 

and remote sensing information (Table S1, Fig. S1). We evaluated 20 functional and structural 

ecosystem attributes, including physical (e.g., albedo, soil texture, precipitation variability), 10 

biological (e.g., plant cover, richness, functional traits, microbial communities) and chemical (e.g., 

soil organic carbon, leaf nitrogen) variables. These attributes are strongly related to the ability of 

drylands to provide essential ecosystem services such as climate regulation, nutrient cycling and 

livestock production (the most extensive land use in global drylands, 6), and largely determine 

their responses to climate change and desertification drivers (5). We also studied variables related 15 

to plant-soil (e.g., fertility islands associated with the presence of plant canopies 14), plant-climate 

(e.g., plant resistance to climatic variability) and plant-plant (e.g., spatial networks) interactions, 

which underpin many ecosystem processes in terrestrial ecosystems (11, 15; see ref. 16 for further 

rationale). 

All the ecosystem functional and structural attributes evaluated responded in a non-linear manner 20 

to increases in aridity (Table S2). In other words, once an aridity level is reached, small increases 

in aridity led to drastic changes in the value of the attribute (Fig. S2) or modified its relationship 

with aridity (changing slope, Fig. S3). Whereas all responses to aridity observed fitted better to a 
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non-linear or abrupt change (i.e., discontinuous changes sensu ref. 17) than to a linear monotonic 

model (Table S2), for some variables the variance explained was relatively low. This suggests that 

other environmental or human-related factors, such as topography or land use, may also interact 

with aridity to determine observed non-linear changes, which provides scope for actions aimed at 

minimizing these drastic shifts.  5 

Contrary to what is commonly assumed by theoretical approaches (9), observed responses of 

ecosystem attributes to increases in aridity followed a sequential series of thresholds. The presence 

of multiple thresholds has been conceptualized regarding ecosystem degradation (18), but have 

not yet received empirical and quantitative support. Thus, our results suggest that the response of 

drylands to aridity can be organized in three phases characterized by concurring non-linear or 10 

abrupt ecosystem shifts (Fig. 1). Observed ecosystem changes with increases in aridity start with 

a “vegetation decline phase” characterized by a sharp reduction in vegetation productivity (as 

measured using remote sensing, see 16) at aridity levels ≥ 0.54 (Fig. 2A). This reduction in 

vegetation productivity is consistent with observed decreases in light-saturated leaf photosynthetic 

activity measured in situ on 809 plant species across the world (Fig. S4). Plants typically reduce 15 

their leaf area to adapt to dry conditions (19), often increasing their leaf-mass/area ratio, nitrogen 

content and relative photosynthetic capacity per unit of leaf area (20). However, our results suggest 

that such leaf-adaptation to drought may compromise raw plant photosynthesis and productivity, 

leading to a sharp decline in these key ecosystem attributes at aridity levels around 0.54. 

As aridity continues to increase, we identified a “soil disruption” phase characterized by changes 20 

in multiple ecosystem structural and functional attributes under aridity levels higher than 0.7. 

These include abrupt declines in soil variables such as organic carbon –a key determinant of soil 

fertility–, total nitrogen and clay contents, stability of aggregates and relative abundance of fungal 
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functional groups (Fig. 2C; Fig. S5). Observed reductions in soil nutrients could be associated with 

decreased plant-derived organic inputs into the soil, which are driven by reductions in plant 

productivity observed during the “vegetation decline” phase and by drastic reductions in leaf 

nitrogen content occurring at aridity ~0.65 (Fig. 2B). This notion is further supported by the sharp 

decline in the positive effect of plant canopies (regarding bare soil areas) on soil organic carbon 5 

(Fig. 2D), and by the reduction in the relative abundance of saprotrophic fungi (Fig. S5I), which 

are key drivers of the formation of “fertility islands” in drylands (14). We speculate that this net 

reduction in the quantity and quality of plant carbon inputs into the soil may occur as a 

consequence of the excessive costs needed for extracting water and nutrients to keep a positive 

carbon gain under increasingly arid conditions (21). Our results further show abrupt declines in 10 

the relative abundance of ectomycorrhizal fungi at this aridity level (Fig. S5I), which have also 

been linked with abrupt changes in plant community composition and soil biogeochemical cycles 

(13). Other changes observed beyond the 0.7 aridity threshold include a decline in the frequency 

of positive plant-plant interactions (Fig. S5H and ref. 22), for which soil amelioration is a 

fundamental component (9, 23). During this “soil disruption” phase, vegetation shifts from 15 

grasslands and savannahs to shrublands (Fig. S5D), which are better adapted to nutrient-poor and 

sandy soils (23, 24). We also found a steep decrease in the overall sensitivity of vegetation to 

climatic fluctuations (25) (Fig. S5A), which might be associated to the deeper root systems 

commonly found in shrubs, which make them less sensitive to seasonal droughts (24). The shift to 

shrub-dominated vegetation observed adds to other transitions identified under wetter climates, 20 

such as those occurring between forests and savannas (26) or C3- and C4-dominant grasslands 

(27), and provides novel and relevant information to understand how climate change  may affect 

dominant vegetation, and associated soil properties, in large areas of our planet. 
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Finally, we detected an “ecosystem breakdown” phase, characterized by extreme reductions in 

plant cover and exponential increases in albedo beyond aridity values of 0.8 (Fig. 2E; Fig. S6C). 

Once this aridity level is crossed, most plant species may no longer survive shortages in water and 

nutrient availability. Accordingly, we observed a strong decline in plant species richness at this 

stage (Fig. 2F) consistent with a major turnover in species reported in other studies (28). These 5 

changes are associated with drastic increases in specific leaf area, a trait linked to plant resource 

use and litter decomposition (Fig. S6B), and leaf photosynthetic rates (see Fig. S4). The observed 

changes could be related to a physiological limit for the existence of stress-tolerant strategies and 

evergreen vegetation at aridity levels > 0.8, as this vegetation is replaced by stress-avoidant 

summer deciduous shrub species that may benefit most from the sparse and unpredictable rain 10 

events characterizing these environments (21, 29) (Fig. S6D). We also found a sudden increase in 

the relative abundance of fungal animal pathogens in the soil (Fig. S6A), which adds to the 

negative effects of reducing plant cover/biomass by potentially increasing the incidence of 

important fungal diseases. 

According to current climatic forecasts (IPCC´s RCP8.5 scenario, 3), up to 22% of terrestrial 15 

surface (28.6% of current dryland area) will cross one or more of the three phases identified by 

2100 (Fig. 3, see also Fig. S7). Therefore, according to our space-for-time substitution approach, 

these regions (Fig. 3) are at high risk of rapid declines in ecosystem functional and structural 

attributes, key to maintaining their capacity to provide essential ecosystem services. Areas 

expected to cross the 0.8 aridity threshold are particularly sensitive and will undergo massive 20 

vegetation collapse and species loss. Increases in albedo associated with these vegetation 

changes, however, may affect the energy balance of Earth´s surface and partially buffer global 

warming (30). Nevertheless, we must remember that such changes would render these areas 
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unable to sustain current animal and human populations, with fundamental and negative 

consequences for human well-being globally. 

Our results, based on analyzing the most comprehensive empirical evidence available so far, show 

that the responses of multiple functional and structural ecosystem attributes to increases in aridity 

follow a series of sequential thresholds. Our work goes beyond current knowledge by identifying, 5 

for the first time, three phases of abrupt ecosystem changes characterized by consecutive aridity 

thresholds. Along with recent studies dealing with multiscale regime shifts (12), our study provides 

a well-defined framework for sequential shifts that can inspire a new generation of multiscale 

models to explore ecosystem responses to climate change. Our findings also set the stage for future 

studies exploring temporal changes in the ecosystem variables investigated, particularly in areas 10 

likely to cross the aridity thresholds identified in the future, and put the focus on identifying 

potential catastrophic shifts and early warning indicators for them. Finally, the framework 

introduced here can be used to identify those attributes for which the responses to aridity are more 

sensitive to buffering, and for establishing effective adaptation and mitigation actions aimed at 

preserving the capacity of drylands to supply essential ecosystem services needed to sustain a 15 

growing human population.  
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Figures: 

 

Fig. 1. Sequence of abrupt responses in global drylands as aridity increases. Top: values of 

the 21 aridity thresholds identified, with their Bootstrapped confidence intervals. Each color 

identifies a homogeneous set of variables that do not overlap others and define phases of abrupt 5 

shifts. SOC = soil organic carbon, NDVI: Normalized difference vegetation index. Bottom: a 

schematic representation of ecosystem changes associated with the crossing of the three phases we 

identified. The first threshold, related to a decay in vegetation productivity and photosynthetic 
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activity, occurs when crossing an aridity level around 0.55. At aridity levels ~ 0.7, sharp declines 

in soil fertility, plant nitrogen content and biotic (plant-soil, plant-plant) interactions, and drastic 

compositional changes in plant and soil microbial communities are observed. Finally, drastic 

reductions in plant cover, increases in soil albedo and shifts in leaf traits towards stress-avoidance 

were detected when aridity level ~ 0.8. Ilustration by DharmaBeren Studio 5 

(www.dharmaberen.com). 
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Fig. 2. Non-linear responses of multiple ecosystem attributes to aridity. Examples of aridity 

thresholds observed for NDVI (normalized difference vegetation index; A), leaf nitrogen content 
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(B), soil organic carbon (C), plant effects on soil organic carbon (D), vegetation cover (E) and 

plant species richness (F). 1: Black-dashed and blue (solid) lines represent the smoothed trend 

fitted by a GAM model and the linear fits at both sides of each threshold, respectively. Inset 

numbers in red and the vertical dashed lines describe the aridity threshold identified. 2: Violin 

diagrams show bootstrapped slopes (A, D and E) or values of the predicted fitted trend at the 5 

threshold (B, C, and F) of the two regressions existing at each side of the threshold (red: before 

the threshold; blue, after the threshold).   

 

Fig. 3. Map of climate change vulnerability in global drylands. This map includes areas that 

will cross each (or several) of the phases described according to the aridity predicted for 2100 by 10 

the IPCC rcp8.5 scenario (i.e., under the assumption of sustained increase in CO2 emissions). 

Transparent areas are outside the range used for the data in this study (i.e. areas that are not 

drylands today, see (16) for further details). 
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