335 research outputs found

    IODP Expedition 322 Drills Two Sites to Document Inputs to The Nankai Trough Subduction Zone

    Get PDF

    Focussing on Proto-Seismogenic Zone of erosional Convergent Margin

    Get PDF
    Great earthquakes in subduction zones occur after stable slip in the proto-seismogenic zone transitions to the unstable slip that characterizes seismogenic zones. Subducted material input to seismogenic zones affects this transition. Material structure, lithology and physical properties change progressively during subduction, and according to current hypotheses, specific material transformations trigger the stable to unstable slip transition.Where accretion dominates a convergent margin, material input is trench sediment that is easily drill-sampled. However, where erosion dominates a margin, material input is unknown because it originates along the base of the upper plate and alters differently. The depth at which material is eroded lies beyond the sampling capabilities of past scientific ocean drilling, so the protoseismogenic zone transformed material has never been drill-sampled; nor does geophysics resolve its structure, lithology, and physical properties. The Japanese riser drill ship Chikyu in the Integrated Ocean Drilling Program (IODP) overcomes this difficulty. Preparing a site for deep drilling is a much greater task than preparing the shallower sites of past programs, so this is accomplished during workshops

    IODP Expedition 322 Drills Two Sites to Document Inputs to The Nankai Trough Subduction Zone

    Get PDF
    Ocean Drilling Program were to sample and log the incoming sedimentary strata and uppermost igneous basement of the Shikoku Basin, seaward of the Nankai Trough (southwestern Japan). Characterization of these subduction inputs is one piece of the overall science plan for the Nankai Trough Seismogenic Zone Experiment. Before we can assess how various material properties evolve down the dip of the plate interface, and potentially change the fault’s behavior from stable sliding to seismogenic slip, we must determine the initial pre-subduction conditions. Two sites were drilled seaward of the trench to demonstrate how facies characterand sedimentation rates responded to bathymetric architecture. Site C0011 is located on the northwest flank of a prominent basement high (Kashinosaki Knoll), and Site C0012 is located near the crest of the seamount. Even though significant gaps remain in the coring record, and attempts to recover wireline logs at Site C0012 failed, correlations can be made between stratigraphic units at the two sites.Sedimentation rates slowed down throughout the condensed section above the basement high, but the seafloor relief was never high enough during the basin’s evolution to prevent the accumulation of sandy turbidites near the crest of the seamount. We discovered a new stratigraphic unit, the middle Shikoku Basin facies, which is typified by late Miocene volcaniclastic turbidites. The sediment-basalt contact was recovered intact at Site C0012, giving a minimumbasement age of 18.9 Ma. Samples of interstitial water show a familiar freshening trend with depth at Site C0011, but chlorinity values at Site C0012 increase above the values for seawater toward the basement contact. The geochemical trends at Site C0012 are probably a response to hydration reactions in the volcaniclastic sediment and diffusional exchange with seawater-like fluid in the upper igneous basement. These data are important because they finallyestablish an authentic geochemical reference site for Nankai Trough, unaffected by dehydration reactions, and they provide evidence for active fluid flow within the upper igneous crust. Having two sets of geochemical profiles also shows a lack of hydrogeological connectivity between the flank and the crest of the Kashinosaki Knoll

    IODP deep riser stratigraphic drilling in the southwest Pacific: tectonics, climate and ancient life on the Lord Howe Rise continental ribbon

    No full text
    The Lord Howe Rise is a ribbon of submerged and extended continental crust that separated from Australia during the Late Cretaceous. The Lord Howe Rise is remote and concealed beneath the Tasman Sea in water depths of 1000–3000 m, therefore current knowledge of Lord Howe Rise geology is based on sparse shallow (100-million-year geological, tectonic and climatic history of the region. To this end, Geoscience Australia and JAMSTEC are leading an international effort to drill a deep stratigraphic well through a Lord Howe Rise rift basin that will core Cretaceous and older sediments and potentially basement rocks. This deep riser drilling will extend to a depth of up to about 2500 m below the seafloor. Two shallow, non-riser holes may also be drilled up to ~500 m below the seafloor into basement horst blocks. A proposal for drilling using the JAMSTEC drilling vessel CHIKYU was submitted to the International Ocean Discovery Program (IODP) in October 2015 (Proposal 871-CPP) and was rated “excellent” by the IODP Science Evaluation Panel in January 2017. The objectives outlined in this IODP proposal are to: 1) define the role and importance of continental crustal ribbons, like the Lord Howe Rise, in plate tectonic cycles and continental evolution; 2) recover new high-latitude biomarker and micropaleontology data in the southwest Pacific to better constrain Cretaceous paleoclimate and linked changes in ocean biogeochemistry, and; 3) test fundamental evolutionary concepts for sub-seafloor microbial life over a 100-million-year timeframe. The deep stratigraphic drilling is planned for 2019 or 2020, subject to funding approval. Preparations for drilling include a seismic survey conducted in the first half of 2016 that acquired 2D seismic reflection and refraction data along an east–west transect across the Lord Howe Rise to map regional crustal structure and 2D seismic reflection data at the prospective drill sites. Results from this survey helped to better constrain depth to and character of the basement beneath the proposed drill sites and suggest that the crust beneath the Lord Howe Rise is about 20 km thick. Initial velocity models also provide evidence of crustal segmentation linked to lineaments that align with fracture zones in the Tasman Sea oceanic crust. A second survey in late 2017 will acquire the geotechnical data necessary to successfully drill a deep stratigraphic well. This detailed site survey will also acquire high-resolution seabed and shallow sub-seafloor data, shallow sediment cores (up to 20 m below-seafloor) and underwater video

    Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability

    Get PDF
    Authigenic carbonates are intercalated with massive gas hydrates in sediments of the Cascadia margin. The deposits were recovered from the uppermost 50 cm of sediments on the southern summit of the Hydrate Ridge during the RV Sonne cruise SO110. Two carbonate lithologies that differ in chemistry, mineralogy, and fabric make up these deposits. Microcrystalline high-magnesium calcite (14 to 19 mol% MgCO3) and aragonite are present in both semiconsolidated sediments and carbonate-cemented clasts. Aragonite occurs also as a pure phase without sediment impurities. It is formed by precipitation in cavities as botryoidal and isopachous aggregates within pure white, massive gas hydrate. Variations in oxygen isotope values of the carbonates reflect the mineralogical composition and define two end members: a Mg-calcite with δ18O =4.86‰ PDB and an aragonite with δ18O =3.68‰ PDB. On the basis of the ambient bottom-water temperature and accepted equations for oxygen isotope fractionation, we show that the aragonite phase formed in equilibrium with its pore-water environment, and that the Mg-calcite appears to have precipitated from pore fluids enriched in 18O. Oxygen isotope enrichment probably originates from hydrate water released during gas-hydrate destabilization

    IODP Expedition 334: An Investigation of the Sedimentary Record, Fluid Flow and State of Stress on Top of the Seismogenic Zone of an Erosive Subduction Margin

    Get PDF
    The Costa Rica Seismogenesis Project (CRISP) is an experiment to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Integrated Ocean Drililng Program (IODP) Expedition 334 by R/V JOIDES Resolution is the first step toward deep drilling through the aseismic and seismic plate boundary at the Costa Rica subduction zone offshore the Osa Peninsula where the Cocos Ridge is subducting beneath the Caribbean plate. Drilling operations included logging while drilling (LWD) at two slope sites (Sites U1378 and U1379) and coring at three slope sites (Sites U1378–1380) and at one site on the Cocos plate (Site U1381). For the first time the lithology, stratigraphy, and age of the slope and incoming sediments as well as the petrology of the subducting Cocos Ridge have been characterized at this margin. The slope sites recorded a high sediment accumulation rate of 160–1035m m.y.-1 possibly caused by on-land uplift triggered by the subduction of the Cocos Ridge. The geochemical data as well as the in situ temperature data obtained at the slope sites suggest that fluids are transported from greater depths. The geochemical profiles at Site U1381 reflect diffusional communication of a fluid with seawater-like chemistry and the igneous basement of the Cocos plate (Solomon et al., 2011; Vannucchi et al., 2012a). The present-day in situ stress orientation determined by borehole breakouts at Site U1378 in the middle slope and Site U1379 in the upper slope shows a marked change in stress state within ~12 km along the CRISP transect; that may correspond to a change from compression (middle slope) to extension (upper slope)

    Acoustic and mechanical properties of Nankai accretionary prism core samples

    Get PDF
    International audienceWe studied undeformed sediment and accreted strata recently recovered by Ocean Drilling Program/Integrated Ocean Drilling Program (ODP/IODP) drilling in Nankai Trough convergent margin to unravel the changes in physical properties from initial deposition to incipient deformation. We have derived acoustic (Vp) and mechanical (uniaxial poroelastic compliance, compaction amplitude) properties of samples from various drill sites along the Muroto (ODP 1173) and Kii transects (IODP C0001, C0002, C0006, and C0007) from isotropic loading tests where confining and pore pressure were independently applied. We quantified the dependence of Vp on both effective (Peff) and confining (Pc) pressure, which can be used to correct atmospheric pressure measurements of Vp. Experimental Vp obtained on core samples extrapolated to in situ conditions are slightly higher than logging-derived velocities, which can be attributed either to velocity dispersion or to the effect of large-scale faults and weak zones on waves with longer wavelength. In the high-porosity (30%-60%) tested sediments, velocities are controlled at first order by porosity and not by lithology, which is in agreement with our static measurements of drained framework incompressibility, much smaller than fluid incompressibility. Rather than framework incompressibility, shear modulus is probably the second-order control on Vp, accounting for most of the difference between actual Vp and the prediction by Wood's (1941) suspension model. We also quantified the mechanical state of Nankai samples in terms of anisotropy, diagenesis, and consolidation. Both acoustic and mechanical parameters reveal similar values in vertical and horizontal directions, attesting to the very low anisotropy of the tested material. When considering the porous samples of the Upper Shikoku Basin sediments (Site 1173) as examples of diagenetically cemented material, several mechanical and acoustic attributes appeared as reliable experimental indicators of the presence of intergrain cementation. We also detected incipient cementation in samples from IODP Site C0001 (accretionary prism unit). In terms of consolidation, we distinguished two classes of material response (shallow, deformable samples and deep, hardly deformable ones) based on the amount of compaction upon application of a Peff large with respect to the inferred in situ value, with a transition that might be related to a critical porosity

    Indian Monsoonal Variations During the Past 80 Kyr Recorded in NGHP-02 Hole 19B, Western Bay of Bengal: Implications From Chemical and Mineral Properties

    Get PDF
    金沢大学理工研究域地球社会基盤学系Detailed reconstruction of Indian summer monsoons is necessary to better understand the late Quaternary climate history of the Bay of Bengal and Indian peninsula. We established a chronostratigraphy for a sediment core from Hole 19B in the western Bay of Bengal, extending to approximately 80 kyr BP and examined major and trace element compositions and clay mineral components of the sediments. Higher δ 18 O values, lower TiO 2 contents, and weaker weathering in the sediment source area during marine isotope stages (MIS) 2 and 4 compared to MIS 1, 3, and 5 are explained by increased Indian summer monsoonal precipitation and river discharge around the western Bay of Bengal. Clay mineral and chemical components indicate a felsic sediment source, suggesting the Precambrian gneissic complex of the eastern Indian peninsula as the dominant sediment source at this site since 80 kyr. Trace element ratios (Cr/Th, Th/Sc, Th/Co, La/Cr, and Eu/Eu*) indicate increased sediment contributions from mafic rocks during MIS 2 and 4. We interpret these results as reflecting the changing influences of the eastern and western branches of the Indian summer monsoon and a greater decrease in rainfall in the eastern and northeastern parts of the Indian peninsula than in the western part during MIS 2 and 4. © 2018. American Geophysical Union. All Rights Reserved
    corecore