454 research outputs found

    Clinical and radiological outcome of anterior-posterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration: a retrospective comparative study of 133 patients

    Get PDF
    Abundant data are available for direct anterior/posterior spine fusion (APF) and some for transforaminal lumbar interbody fusion (TLIF), but only few studies from one institution compares the two techniques. One-hundred and thirty-three patients were retrospectively analyzed, 68 having APF and 65 having TLIF. All patients had symptomatic disc degeneration of the lumbar spine. Only those with one or two-level surgeries were included. Clinical chart and radiologic reviews were done, fusion solidity assessed, and functional outcomes determined by pre- and postoperative SF-36 and postoperative Oswestry Disability Index (ODI), and a satisfaction questionnaire. The minimum follow-up was 24 months. The mean operating room time and hospital length of stay were less in the TLIF group. The blood loss was slightly less in the TLIF group (409 vs. 480 cc.). Intra-operative complications were higher in the APF group, mostly due to vein lacerations in the anterior retroperitoneal approach. Postoperative complications were higher in the TLIF group due to graft material extruding against the nerve root or wound drainage. The pseudarthrosis rate was statistically equal (APF 17.6% and TLIF 23.1%) and was higher than most published reports. Significant improvements were noted in both groups for the SF-36 questionnaires. The mean ODI scores at follow-up were 33.5 for the APF and 39.5 for the TLIF group. The patient satisfaction rate was equal for the two group

    How does genetic diversity change towards the range periphery? An empirical and theoretical test

    Get PDF
    Question: How does genetic diversity change as one moves along a species' range, towards the periphery? Previous work shows contradictory evidence for an increase, decrease or no clear trend along the range

    A new approach for measuring surface hydrological connectivity

    Get PDF
    The development of surface hydrological connectivity is a key determinant of flood magnitude in drylands. Thresholds in runoff response may be reached when isolated runoff‐generating areas connect with each other to form continuous links to river channels, enabling these areas to contribute to flood hydrographs. Such threshold behaviour explains observed nonlinearities and scale dependencies of dryland rainfall–runoff relationships and complicates attempts at flood prediction. However, field methods for measuring the propensity of a surface to transmit water downslope are lacking, and conventional techniques of infiltration measurement are often inappropriate for use on non‐agricultural drylands. Here, we argue for a reconceptualization of the dryland surface runoff process, suggesting that the downslope transfer of water should be considered alongside surface infiltration; that is, there is a need for the “aggregated” measurement of infiltration and overland flow hydraulics. Surface application of a set volume of water at a standardized rate generates runoff that travels downslope; the distance it travels downslope is determined by infiltration along the flow, integration of flow paths, and flow resistance. We demonstrate the potential of such a combined measurement system coupled with structure‐from‐motion photogrammetry to identify surface controls on runoff generation and transfer on dryland hillslopes, with vegetation, slope, surface stone cover, and surface roughness all having a significant effect. The measurement system has been used on slopes up to 37° compared with the flat surface typically required for infiltration methods. On average, the field workflow takes ~10–15 min, considerably quicker than rainfall simulation. A wider variety of surfaces can be sampled with relative ease, as the method is not restricted to stone and vegetation‐free land. We argue that this aggregated measurement represents surface connectivity and dryland runoff response better than standard hydrological approaches and can be applied on a much greater variety of dryland surfaces

    Resilience and Alternative Stable States After Desert Wildfires

    Get PDF
    Improving models of community change is a fundamental goal in ecology and has renewed importance during global change and increasing human disturbance of the biosphere. Using the Mojave Desert (southwestern United States) as a model system, invaded by nonnative plants and subject to wildfire disturbances, we examined models of resilience, alternative stable states, and convergent-divergent trajectories for 36 yr of plant community change after 31 wildfires in communities dominated by the native shrubs Larrea tridentata or Coleogyne ramosissima. Perennial species richness on average was fully resilient within 23 yr after disturbance in both community types. Perennial cover was fully resilient within 25 yr in the Larrea community, but recovery was projected to require 52 yr in the Coleogyne community. Species composition shifts were persistent, and in the Coleogyne community, the projected compositional recovery time of 550 yr and increasing resembled a deflected trajectory toward potential alternative states. Disturbed sites contained a perennial species composition of predominately short-statured forbs, subshrubs, and grasses, contrasting with the larger-statured shrub and tree structure of undisturbed sites. Auxiliary data sets characterizing species recruitment, annual plants including nonnative grasses, biocrust communities, and soils showed persistent differences between disturbed and undisturbed sites consistent with positive feedbacks potentially contributing to alternative stable states. Resprouting produced limited resilience for the large shrubs L. tridentata and Yucca spp. important to population persistence but did not forestall long-term reduced abundance of the species. The nonnative annual grass Bromus rubens increased on disturbed sites over time, suggesting persistently abundant nonnative plant fuels and reburn potential. Biocrust cover on disturbed sites was half and species richness a third of amounts on undisturbed sites. Soil nitrogen was 30% greater on disturbed sites and no significant trend was evident for it to decline on even the oldest burns. Disturbed desert plant communities simultaneously supported all three models of resilience, alternative stable states, and convergent-divergent trajectories among community measures (e.g., species richness, composition), timeframes since disturbance, and spatial resolutions. Accommodating expression within ecosystems of multiple models, including those opposing each other, may help broaden theoretical models of ecosystem change

    Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation

    Get PDF
    Genetic variation was assessed across the UK geographical range of Cirsium acaule and Cirsium heterophyllum. A decline in genetic diversity and increase in population divergence approaching the range edge of these species was predicted based on parallel declines in population density and seed production reported seperately. Patterns were compared with UK populations of the widespread Cirsium arvense.Populations were sampled along a latitudinal transect in the UK and genetic variation assessed using microsatellite markers. Cirsium acaule shows strong isolation by distance, a significant decline in diversity and an increase in divergence among range-edge populations. Geographical structure is also evident in C. arvense, whereas no such patterns are seen in C.heterophyllum. There is a major disparity between patterns of genetic variation in C. acaule and C. heterophyllum despite very similar patterns in seed production and population isolation in these species. This suggests it may be misleading to make assumptions about the geographical structure of genetic variation within species based solely on the present-day reproduction and distribution of populations

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de AgronomĂ­a. Departamento de MĂ©todos Cuantitativos y Sistemas de InformaciĂłn; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Bena, MarĂ­a Julia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Godoy BĂŒrki, Ana Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de AgrobiotecnologĂ­a del Litoral. Universidad Nacional del Litoral. Instituto de AgrobiotecnologĂ­a del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; Argentin

    Giant cervicothoracic extradural arachnoid cyst: case report

    Get PDF
    The pathogenesis, etiology, and treatment of the spinal arachnoid cyst have not been well established because of its rarity. A 57-year-old male was presented with spastic quadriparesis predominantly on the left side. His radiological examination showed widening of the cervical spinal canal and left neural foramina due to a cerebrospinal fluid - filled extradural cyst that extended from C2 to T2 level. The cyst was located left anterolaterally, compressing the spinal cord. Through a C4–T2 laminotomy, the cyst was excised totally and the dural defect was repaired. Several features of the reported case, such as cyst size, location, and clinical features make it extremely unusual. The case is discussed in light of the relevant literature
    • 

    corecore