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Abstract
Grasses are ancestrally tropical understory species whose current dominance in warm

open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates

of photosynthesis in warm and water stressed environments, and the syndrome is consid-

ered to induce niche shifts into these habitats while adaptation to cold ones may be compro-

mised. Global biogeographic analyses of C4 grasses have, however, concentrated on

diversity patterns, while paying little attention to distributional limits. Using phylogenetic con-

trast analyses, we compared macro-climatic distribution limits among ~1300 grasses from

the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in

grasses. We explored whether evolution of C4 photosynthesis correlates with niche expan-

sions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and

Paspaleae. We compared the climatic extremes of growing season temperatures, aridity,

and mean temperatures of the coldest months. We found support for all the known biogeo-

graphic distribution patterns of C4 species, these patterns were, however, formed both by

niche expansion and niche changes. The only ubiquitous response to a change in the pho-

tosynthetic pathway within Panicoideae was a niche expansion of the C4 species into

regions with higher growing season temperatures, but without a withdrawal from the inher-

ited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution

in the American tribe Paspaleae differed from the pattern supported in the globally distrib-

uted tribe Paniceae and at family level.

Introduction
Grasses originated as tropical understory species, adapted to humid and shaded conditions, but
have since developed into one of the most widespread, versatile, and species rich plant families
on earth [1–3]. Grasses have reached all continents and adapted to all terrestrial ecosystems
[4], yet niche evolution and the functional traits that underlie climatic range expansion in
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grasses are poorly understood [2,5]. Macroecological analyses that combine species distribu-
tions with phylogeny and GIS-based climate data have uncovered aspects of niche evolution in
a wide range of taxa [6,7]. Within grasses, macroecological niche studies are presently aiming
to pinpoint where new functional traits may have been acquired, as well as examining the cor-
relation between putative key innovations and niche evolution [3,8,9].

C4 photosynthesis is considered one of the key innovations that allowed grasses to radiate in
warm and open habitats [1,10]. The C4 pathway has evolved independently more than 60
times among angiosperms and 22–24 times within the grass family [11,12]. C4 photosynthesis
is a syndrome, which requires modification of several genes, inducing both anatomical and bio-
chemical modifications of the ancestral C3 pathway [1,10,13]. Although C4 photosynthesis is
energetically more expensive than C3 photosynthesis, it nearly eliminates photorespiration,
which reduces the productivity of the C3 pathway in CO2-depleted, hot, and water-stressed
habitats [10]. By reducing photorespiration, the C4 syndrome is more productive in a wide
range of tropical and subtropical habitats. However, the syndrome is less competitive at low
temperatures where photorespiration declines, which may explain why C4 plants are rare in
cold climates [14]. C4 grasses dominate all tropical and subtropical savannahs and constitute
most of the grass flora in warm arid regions with summer rain [15]. At a global scale the C4

syndrome is found in less than 3% of all plant species but these are estimated to produce nearly
a quarter of earth’s primary production [10,16]. Several key crops are C4 grasses (e.g., maize
and sugarcane), but, on the other hand, many weeds and invasive species are C4 grasses too
[17]. Understanding the evolution and ecological advantage of the C4 syndrome is therefore
crucial not only for grass evolution, but for a wide range of disciplines including crop manage-
ment as well as the history and ecology of tropical grasslands and their response to climate
changes.

Long standing efforts to understand the biogeography of C4 grasses have described and
quantified local and global diversity patterns of C4 species (see [15] and references therein).
More recently, macroecological studies have aimed to quantify niche evolution in C4 grasses by
comparing macro-climatic distribution data between C3 and C4 grasses in a phylogenetic con-
text [3,8,18]. The most comprehensive of these analyses [3] found consistent differences in the
mean values of annual rainfall and seasonality among closely related C3 and C4 species, but sur-
prisingly, no differences among the temperature variables. The mean precipitation values of
the C3 species were high enough to maintain a closed canopy vegetation, while the values of the
C4 species were slightly lower and more seasonal corresponding to open vegetation. Macrocli-
matic data therefore seems to support that a change from C3 to C4 photosynthesis in grasses
correlates with a habitat shift from the tropical understory to the tropical savannah system, and
that C4 species occupy drier regions than their C3 relatives but not necessarily warmer ones [3].

Studies on macro-climatic niche evolution in grasses have, however, only examined species
mean values not climatic limits. Some of the reasons for this are that public available distribu-
tion databases are error-prone and possible incomplete, which complicate obtaining reliable
distribution limits in global data sets [19], however mean values are less affected. Yet, the niche
concept as well as large scale biogeographic patterns are based on distributional limits [7].
Niches can expand, contract, or shift [20], and these changes bear different implications on
what may be considered the evolutionary and ecological advantages of the C4 syndrome. The
evolution of C4 photosynthesis may either correlate with a niche specialization or an expan-
sion, depending on whether both or only a single climatic extreme changes position; in the lat-
ter case, C4 species become generalists that succeed in a wide range of habitats including those
occupied by their closest C3 relatives. Recent analyses within the grass species Alloteropsis semi-
alata (R. Br.) Hitchc. that contains both C4 and non-C4 genotypes suggest that a niche expan-
sion may be the initially response to a change in the photosynthetic pathway, while niche
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specialization is a delayed response that requires speciation within the new habitat [21]. When
macro-climatic distribution data is used to explore niche evolution, both of these niche changes
may alter the mean values of the C4 species, but the patterns can be distinguished if the climatic
extremes are compared; this is the aim of the present study.

C4 photosynthesis has evolved several times within grasses but only among the tropical and
subtropical subfamilies gathered in the PACMAD clade (subfamilies Panicoideae, Arundinoi-
deae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae, [12]). All but five of
the photosynthetic transitions are found in the subfamily Panicoideae sensu [12], which offers
a rare opportunity to compare several parallel origins of the C4 syndrome among closely related
species. The three main Panicoideae tribes comprise approximately half of the species in the
PACMAD clade and nearly 30% of all grasses [12].

Here we explore whether the C3!C4 transitions correlate with a general pattern of macro-
climatic niche evolution in the subfamily Panicoideae, using available distribution records to
infer climatic extremes of three variables: aridity (AI), mean temperature of the warmest quar-
ter (MTWQ), and mean temperature of the coldest quarter (MTCQ). We analysed the
response both at subfamily level and within the subtribes Paspaleae and Paniceae that contain
most of the C3!C4 transitions within Panicoideae [12]. For each variable, we explored whether
C4 photosynthesis correlates with niche stasis, niche expansions, or a full niche changes.

Materials and Methods
Most studies that analyse macro-climatic niche evolution in a phylogenetic context rely on the
taxon sampling available for phylogenetic analyses. However, within Panicoideae (~3560 spp.)
the two tribes that contain most of the C3! C4 transformations, Paspaleae and Paniceae,
include ~2170 species [22] among which less than 20% are available for phylogenetic analyses
(see Phylogenetic Analyses below). The ratio of C3 to C4 species is ~1/5 within the two tribes
but ~1/2 in the phylogenetic data set. This bias probably arose because panicoids have been
sampled to address phylogenetic relationships above generic level, and not to analyse niche
evolution. Sampling efforts have concentrated on the polyphyletic genus Panicum; where most
of the newly segregated genera consist of C3 species. In contrast, the major C4 genera are
severely undersampled in Panicoideae. The distribution data available through the Global Bio-
diversity Information Facility GBIF (www.gbif.org) is more complete. GBIF contains data for
~44% of the species in the two tribes and the C3/ C4 ration is ~1/3. The distribution data set is
consequently more complete, and we use this for comparing climatic extremes within Panicoi-
deae. However, DNA sequences are lacking for more than half of the species in this data set. To
place these manually within the phylogeny, several nodes had to be collapsed, as the mono-
phyly of various genera largely remain untested.

Distribution and climate data
We downloaded all georeferenced species from the subfamily Panicoideae through GBIF
(accessed November 2011 to December 2013). All species names were validated or synony-
mized according to the Catalogue of NewWorld grasses ([23] updated at www.tropicos.org) or
the Plant List (www.theplantlist.org). Intermediate C3-C4 species and species with five or fewer
georeferenced locations were excluded. A total of 1307 species (nearly 40% of the subfamily)
and more than 450.000 locality records were included in the final distribution analyses.

Because publically available distribution databases are error-prone and potentially incom-
plete [19], studies on macro-climatic niche evolution mostly examine species mean values not
climatic limits. One potential problem is that the available records may or may not capture the
geographic and/or macro-climatic ranges of the species (see [19]). However, grasses are
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economical important and well collected in many areas. Grasses may therefore be one of the
better candidates for a comparative study on climatic extremes. Within Panicoideae, the
macro-climatic minimum values, for the large majority of the species, fall in North America,
southern South America, Australia, and southern Africa. Because grasses are economically
important in these regions, they are well collected, and the records are available through GBIF.
The maximum values fall in tropical regions of America, Africa, and Asia–where grasses are
less collected. This bias should, however, affect C3 and C4 species alike. Rarefaction plots of the
data are found in S1 Fig Rarefaction.

Temperature variables were extracted from BioClim (http://www.worldclim.org [24]) at a
spatial resolution of 2.5 arc-minutes while aridity data was extracted from CGIAR-CSI at a spa-
tial resolution of 30 arc-seconds (http://www.cgiar-csi.org).

Minimum and maximum values were extracted for each climatic variable for each species
based on GBIF distribution data. We excluded 5% of the records at each extreme, to avoid dis-
tortion from misidentified species, spatially-imprecise georeferences, errors caused during digi-
talization of the herbarium specimens etc. The final climate data set is found in S1 Table
Climate Data Set. The macro-climatic ranges contained in the climate data set are shown for
C3 and C4 species in Fig 1.

Fig 1. Macro-climatic ranges of the 1307 panicoid species from the climate data set including 237 C3 and 1070 C4 species ignoring phylogenetic
relationships. The line widths of the bars are proportionate to the number of species in each bin. All quantitative analyses treated the Aridity Index (AI) and
the Mean Temperature of the Coldest and Warmest Quarters (MTCQ and MTWQ) as continuous characters, but the variables are here binned for illustrative
purposes. Following the United Nations Environment Programme we use the AI categories: <0.03 hyper arid, 0.03–0.2 arid, 0.2–0.5 semi-arid, 0.5–0.65 dry
sub-humid, >0.65 humid. Following the Köppen climate classification, the limit between tropical and subtropical climates falls at approx. 18ºC.

doi:10.1371/journal.pone.0151075.g001
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Temperature. We explore whether the different temperature response of C3 and C4 pho-
tosynthesis affects the distribution of C3 and C4 panicoids, by analysing climatic extremes of
both the ‘Mean Temperature ofWarmest Quarter” and the ‘Mean Temperature of Coldest Quar-
ter”. We based all quantitative analyses on continuous values but used bins of 5°C for graphic
and descriptive purposes. According to the Köppen climate classification (see [25]), the limit for
tropical climate coincides with a year round average temperature of 18°C or higher. In the pres-
ent study, the limit for tropical climate mainly falls in the 15°-20°C bin except in Australia and
Northern Africa where it falls in the 20°C-25°C because arid climate (like central Australia and
Sahel/Sahara) is not considered tropical in the Köppen climate classification.

Aridity. Compared to the C3 pathway, the C4 syndrome has an inherited higher water use
efficiency, and there has been much discussion in the literature as to whether the C4 syndrome
is an adaptation to arid environments or merely improves the conditions for adapting to these
(see [15,26] and references therein). Variables related to precipitation are therefore included in
all C4 niche analyses. Because aridity is related to both rainfall and temperature, we compared
climatic extremes among C3 and C4 species using the aridity index (AI = Mean Annual Precipi-
tation/Mean Annual Potential EvapoTranspiration) extracted from the CGIAR-CSI Global
Aridity and Global PET Geospatial Database [27]. We based all quantitative analyses on con-
tinuous values but used the categories established by the United Nations Environment Pro-
gramme for graphic and descriptive purposes: Aridity Index (AI):<0.03 Hyper Arid, 0.03–0.2
Arid, 0.2–0.5 Semi-Arid, 0.5–0.65 Dry sub-humid, >0.65 Humid [27]. Grasslands (incl. savan-
nahs and shrublands) are found in all categories except in hyper arid regions, but grasslands
become the dominant biome in semi-arid regions while desert and forest dominate drier or
more humid regions respectively [28,29].

Phylogenetic analyses
We searched GenBank for sequences of ndhF, rbcL, and trnL for all available species of Panicoi-
deae. The matrix included a total of 487 species of which 412 belong to one of the two tribes
Paspaleae and Paniceae. We assembled the matrix with the program GB-to-TNT [30] calling
Mafft for the alignment step [31]. Parsimony analyses were done using the program TNT ver.
1.1 [32], treating gaps as missing data.

Bayesian inferences of phylogenetic trees were done with MrBayes 3.1 [33] through the
CIPRES portal [34]. Partitions were allowed to evolve under different models according to the
JModel test 2.0 [35], using the GTR + I + G substitution model for ndhF and HKY +I +G for
rbcL and trnL. Two different analyses, each of four parallel chains, were run for 20 736 000 gen-
erations, sampling a tree each 1000 generations and with a burn-in period of 2 500 000. The
convergence of the MCMC (Markov Chain Monte Carlo) run and the adequacy of the burn-in
length were confirmed using the program tracer v1.6.0 [36].

Analyses of the climate data set
To analyse general trends within Panicoideae, we tested whether the upper and lower climate
extremes differed among C3 and C4 species using Phylogenetic Generalized Least Squares
(PGLS) regression [37,38]. PGLS regressions were done using the program R [39] and the
package nlme [40], with correlation structures calculated from phylogenetic trees using the
package ape [41]. For an input tree, we used a collapsed working phylogeny [42] including all
1307 taxa for which climate data was available. Branch lengths and topology were obtained
from the Bayesian analyses, however, in the working phylogeny where more than half of the
terminals lacked DNA sequence data, we only retained nodes that were both well supported
and well sampled in recent phylogenetic studies (Table 1). The terminal taxa without sequence
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Table 1. Nodes retained in the working phylogeny used for the PGLS regressions. At suprageneric level, we retained nodes that appear in several pub-
lished phylogenetic analyses. At generic level we retained nodes that were both well supported and well sampled in recent phylogenetic studies. Node num-
ber refers to subtribes in Figs 2–4 and S2 Fig Phylogenetic tree. Number of species refers to the number of species in each clade for which climate data was
available (a total of 1307 species, marked in bold).

Taxa nr node nr sp Photosynthesis References

Chasmanthieae+Zeugiteae 16 C3 [12]

Chasmanthieae 6 C3 [12]

Zeugiteae 10 C3 [12]

Tristachyideae+Centotheceae+Cyperochloeae+Thysanolaeneae 50 C3 + C4 [12]

Tristachyideae 44 C4 [12]

Centotheceae+Cyperochloeae+Thysanolaeneae 6 C3 [12]

Gynerieae+Arundinelleae+Andropogoneae+Paspaleae+Paniceae 1241 C3 + C4 [12]

Arundinelleae+Andropogoneae+Paspaleae+Paniceae+Reynaudia 1240 C3 + C4 [12]

Arundinelleae+Andropogoneae 319 C4 [12]

Arundinelleae 13 C4 [12]

Andropogoneae 306 C4 [12]

Paspaleae 349 C3 + C4 [12,46]

Arthropogoninae+Otachyriinae 61 C3 + C4 [12]

Arthropogoninae 2 45 C3 + C4 [12,46]

Arthropogoninae p.p. unresolved 29 C3 + C4

Apochloa 10 C3 [47]

Coleataenia 6 C4 [48]

Otachyriinae 1 16 C3 + C4 [49]

Anthaenantia 3 C4 [49]

Otachyriinae p.p. 13 C3 [49]

Paspalinae 288 C3 + C4 [12,46]

Paspalinae p.p. unresolved 24 C3

Ocellochloa 10 C3 [50]

Renvoizea 6 C4 [47]

Streptostachys+Axonopus 50 C3 + C4 [12]

Streptostachys 1 C3 [46]

Axonopus 49 C4 [51]

Paspalum+Aakia+Anthaenantiopsis+Osvaldoa 198 C4 [52]

Paspalum 195 C4 [12,46]

Aakia+Anthaenantiopsis+Osvaldoa 3 C4 [52]

Paniceae 571 C3 + C4 [12,46]

Anthephorinae 72 C4 [12,46]

Boivinellinae 6 59 C3 + C4 [12,46]

Boivinellinae p.p. unresolved 29 C3

Alloteropsis 4 C4 [53]

Echinochloa 21 C4 [12]

Parodiophyllochloa 5 C3 [54]

Neurachninae 4 17 C3 + C4 [12,46]

Ancistrachne+Calyptochloa+Cleistochloa 7 C3 [12]

Neurachne+Paraneurachne 7 C3 + C4 [55]

Thyridolepis 3 C3 [55]

Dichantheliinae 3 43 C3 [56]

Dichanthelium 41 C3 [56]

Adenochloa 2 C3 [56]

SubCladeB 5 47 C3 [12,46]

(Continued)
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data were pasted into these polytomies and were either assigned the mean branch length of the
terminals in the 487 taxon phylogeny, or alternatively, we used the mean branch length among
the terminals within each retained clade. We also analysed the 1307 taxon working phylogeny
setting all branch lengths equal. For each input tree, we compared five models, one without
phylogenetic correlation and four models with variations in the phylogenetic correlation:
Brownian motion, λ of [43], g of [44], and ρ of [37], selecting the model with lowest AIC.

To analyse distribution patterns at a lower taxonomic scale that may differ from the general
trends [45], we repeated the PGLS regressions in the individual tribes Paspaleae and Paniceae,
with branch lengths set as in the analyses at subfamily level.

Results

Phylogenetic analyses
We obtained the same topology as published in recent parsimony and Bayesian analyses (e.g.,
[12,46]). Also in agreement with earlier analyses, tribes and subtribes were monophyletic and
mostly well supported, while the relationships among and within the subtribes were poorly
resolved. The strict consensus tree and branch supports from the parsimony analysis are
shown in S2 Fig Phylogenetic tree; names of tribes and subtribes follow [46] and [56]. Depend-
ing on the topology, there are 16–19 C3!C4 transitions within the Panicoideae. The major C4

clades are the tribe Andropogoneae, the genus Paspalum (tribe Paspaleae), and the subtribes
Melinidinae, Panicinae, and Cenchrinae (tribe Paniceae). The C4 syndrome differs in anatomi-
cal details among the latter subtribes and is considered to have evolved independently in each
[46].

Analyses of the climate data set
Fig 1 shows the macro-climatic ranges of C3 and C4 species within the data set after eliminating
5% of the records at each climatic extreme. Figs 2–4 show the climatic extremes in the phyloge-
netic context used in the PGLS regressions. The results of the PGLS regressions are found in
Table 2. In all cases the AIC criterion pointed to Grafen or Pagel as the best fitting model,
but except for a single case (marked with an � in Table 2) none the alternative models with
ΔAIC�10 contradicted the results shown in Table 2.

Mean Temperature of Warmest Quarter. Consistent with the known global biogeo-
graphic pattern of C4 species, the majority of the C4 panicoids are found in regions where the
MTWQ lie above 15°C, though several species reach areas with lower temperatures (Fig 1).
The maximumMTWQ for most C4 species lie between 25°-35°C. The distribution of the C3

panicoids is similar to the one observed among C4 species, but very few C3 species appear in
regions where the MTWQ reach above 30°C or below 15°C.

Table 1. (Continued)

Taxa nr node nr sp Photosynthesis References

SubCladeC+Melinidinae+Panicinae+Cenchrinae 333 C3 + C4 [12,46]

SubCladeC 7 2 C3 [12,46]

Melinidinae+Panicinae+Cenchrinae 331 C4 [12,46]

Melinidinae+Panicinae 179 C4 [57]

Melinidinae 99 C4 [12,46]

Panicinae 80 C4 [12,46]

Cenchrinae 152 C4 [12,46]

doi:10.1371/journal.pone.0151075.t001
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When analysing the climatic extremes in a phylogenetic context (Fig 2), MTWQ was the
only climate variable that produced an invariable pattern at subfamily level and within both
subtribes (Table 2). In all analyses the C4 species had significant higher maximum values com-
pared to the C3 species, while the minimum values were indistinguishable.

Mean Temperature of Coldest Quarter. Most panicoids are found in regions where the
MTCQ lie above 15°C, but both photosynthetic types reach areas with lower temperatures
including regions with subzero MTCQ (Fig 1).

When analysing the climatic extremes in a phylogenetic context (Fig 3), the MTCQmaxi-
mum and minimum values of C3 and C4 species were indistinguishable at subfamily level and
within the cosmopolite tribe Paniceae. However, within the American tribe Paspaleae, the min-
imumMTCQ values of the C4 species were significantly lower than the minimum values of the
C3 species, while the maximum values were indistinguishable.

Aridity. Panicoid grasses are mainly found in semi-arid to humid climate, irrespectively of
photosynthetic pathway (Fig 1). Most species have broad macro-climatic AI ranges, but some
C4 species are restricted to semi-arid regions—a distribution pattern that is uncommon among
the C3 panicoids. Several C4 panicoids furthermore reach into arid climate (occasionally hyper-
arid), a pattern that is also uncommon among the C3 panicoids.

When analysing the climatic extremes in a phylogenetic context (Fig 4), the PGLS regres-
sions found lower AI values in both climatic extremes among C4 species compared to C3 spe-
cies (Table 2). These differences were significant in all analyses at subfamily level and within
the tribe Paniceae. Within Paspaleae only the minimum values differed significantly from the
values of the C3 species, and only in one of the analyses, while no differences were found
among the maximum values (Table 2).

Discussion
The present study supports that niche expansion into hotter climates is one of the main
responses to a change from C3 to C4 photosynthesis among panicoid grasses. In fact, signifi-
cantly higher MTWQmaximum values of the C4 species was the only ubiquitous response to
C4 evolution within the subfamily Panicoideae (Table 2). A niche change into more arid cli-
mate was also supported at family level and within the cosmopolite tribe Paniceae but not in
the American tribe Paspaleae.

Because the C4 pathway is more productive than C3 photosynthesis at high temperatures, a
niche expansion of the C4 panicoids into warmer climates is to be expected, even if earlier phy-
logenetic contrast studies on grasses did not find support for the pattern [3]. In the subfamily
Panicoideae, several species from all major C4 clades reach regions with MTWQ>30°C while
few C3 panicoids reach temperatures this high (Fig 1). Within the American tribe Paspaleae,
the C4 lineages reach slightly lower maximumMTWQ (Fig 2), but the values are still signifi-
cant higher than the values among the related C3 species (Table 2). We did not find evidence
for a macro-climatic niche specialization to hot climate among the C4 species. C4 panicoids
that reach regions with high temperatures are also found areas where the MTWQ is similar to

Fig 2. The climatic extremes of MTWQ in the 1307 panicoid grasses included in the climate data set. The topology shows the nodes retained in the
working phylogeny used in the phylogenetic contrast analyses of the climate data set. The circle cladogram has been rooted inGynerium for illustrative
purpose, in the phylogenetic contrast analyses the cladogram was rooted as in S2 Fig Phylogenetic tree. Branch lengths were obtained from the Bayesian
analyses, in the present tree; terminal taxa were assigned the mean branch length within each terminal clade (for details of the nodes see the 400 taxa
cladogram, S2 Fig Phylogenetic tree). Clades with gray background colour are C4 clades. C4 species that do not form a clade are marked with gray lines (in
Arthropogoninae and Neurachninae). Branch numbers refer to names of subtribes in Table 1. All quantitative analyses treated the MTWQ as a continuous
character, but for illustrative purposes the values have been binned in the figure. Cen. = Centotheceae, Cyp. = Cyperochloeae, Thy. = Thysanolaeneae.

doi:10.1371/journal.pone.0151075.g002
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the temperatures occupied by the largely tropical C3 panicoids (Figs 1 and 2), and no differ-
ences could be detected in the minimumMTWC values (Table 2).

Expansion into arid regions and withdrawal from humid ones were the second most com-
mon response to C4 evolution in the subfamily, but it was only partly supported in the Ameri-
can tribe Paspaleae (Table 2). Differences in both minimum and maximum AI values were
found both at family level and within the cosmopolite tribe Paniceae, while in Paspaleae, the
PGLS regressions found significant differences in maximum AI values in a single analysis only
and no differences in the minimum AI values among the C3 and C4 species (Table 2).

Panicoid species from arid regions mainly belong to the globally distributed tribes Andropo-
goneae (all C4) and Paniceae (Fig 4). The tribe Paniceae furthermore contains the Australian
subtribe Neurachninae, which includes the only known C3 panicoids adapted to open dry habi-
tats [58]. However, in the climate data set most of the Paniceae species that reach arid regions
belong to the C4 subtribes Cenchrinae, Melinidinae, and Panicinae (see S1 Table Climate Data
Set). In contrast to the arid adapted C3 species, there is little in the distribution pattern of the
C4 species to suggest that these are drought resistant. Half of the C4 species that reach arid
regions are annuals that may complete their life cycles under brief periods of rain, and several
of the climatic wide-ranging perennials have been collected in microsites such as creeks and
river banks in the drier part of their ranges. Most notable, comparative physiological studies of
climatic wide-ranging and mesic C4 grasses as well as their C3 relatives show that the perfor-
mance advantages of the C4 species are reduced or even lost under drought [59,60]. Although
some of the C4 panicoids restricted to arid climates could prove to be drought resistant, most
climatic wide-ranging C4 species may simply be microhabitat specialists that rely on efficient
dispersal and high growth rates to maintain part of their populations within arid regions. Only
field studies can determine whether the climatic wide-ranging C4 panicoids are generalists or
simply very efficient microhabitat specialists. Being microhabitat specialists in the extreme part
of their climate ranges, rather than dry adapted, would explain how climatic wide-ranging C4

species maintain their fitness to both inherited and new climatic conditions, and, if gene flow
between populations is high enough, the general lack of species specialized to the latter [61,62].

While the higher water use efficiency of the C4 syndrome is considered to favour niche
expansion of C4 species into warmer and/or drier climate, the lack of competitiveness at low
temperature may hinder the C4 species from adapting to cold ones [14]. Nevertheless, in Pani-
coideae most subtribes include C4 species that reach regions with MTCQ below 0°C (Fig 3).
Freezing tolerance during the dormant state may be relatively easy to acquire for both C3 and
C4 species [14], but the C4 syndrome requires high daylight temperatures, to be competitive
during the growing season [14]. Field studies show that C4 species from cold regions are
restricted to warm microsites [14,63], which suggest that traits related to dispersal and recruit-
ment, rather than cold adaptation of the C4 syndrome, maintain these edge populations.

The C3 pathway is not constrained by low temperatures [14], yet we found no evidence sug-
gesting that C3 panicoids are more successful than C4 species in cold climates. None of the
PGLS regressions found differences in the minimumMTWQ values among C3 and C4 pani-
coids, while the minimumMTCQ values differed within the American tribe Paspaleae where

Fig 3. The climatic extremes of MTCQ in the 1307 panicoid grasses included in the climate data set. The topology shows the nodes retained in the
working phylogeny used in the phylogenetic contrast analyses of the climate data set. The circle cladogram has been rooted inGynerium for illustrative
purpose, in the phylogenetic contrast analyses the cladogram was rooted as in S2 Fig Phylogenetic tree. Branch lengths were obtained from the Bayesian
analyses, in the present tree; terminal taxa were assigned the mean branch length within each terminal clade (for details of the nodes see the 400 taxa
cladogram, S2 Fig Phylogenetic tree). Clades with gray background colour are C4 clades. C4 species that do not form a clade are marked with gray lines (in
Arthropogoninae and Neurachninae). Branch numbers refer to names of subtribes in Table 1. All quantitative analyses treated the MTCQ as a continuous
character, but for illustrative purposes the values have been binned in the figure. Cen. = Centotheceae, Cyp. = Cyperochloeae, Thy. = Thysanolaeneae.

doi:10.1371/journal.pone.0151075.g003
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the C4 species reach regions with lower temperatures than the C3 species (Table 2). A large
number of C4 species from a wide range of taxonomic groups are known to occur in regions
with low winter temperatures and some of these tolerate occasional subzero temperatures dur-
ing the growing season [14]. Within Paspaleae, the genus Paspalum in particular is known to
include several high Andean species. However, while the C3 Paspaleae are restricted to regions
where the MTCQ remain above 10°C (Fig 3), C4 species from all three Paspaleae subtribes can

Fig 4. The climatic extremes of the Aridity Index in the 1307 panicoid grasses included in the climate data set. The topology shows the nodes retained
in the working phylogeny used in the phylogenetic contrast analyses of the climate data set. The circle cladogram has been rooted inGynerium for illustrative
purpose, in the phylogenetic contrast analyses the cladogram was rooted as in S2 Fig Phylogenetic tree. Branch lengths were obtained from the Bayesian
analyzes, in the present tree; terminal taxa were assigned the mean branch length within each terminal clade (for details of the nodes see the 400 taxa
cladogram, S2 Fig Phylogenetic tree). Clades with gray background colour are C4 clades. C4 species that do not form a clade are marked with gray lines (in
Arthropogoninae and Neurachninae). Branch numbers refer to names of subtribes in Table 1. All quantitative analyses treated the Aridity Index as a
continuous character, but for illustrative purposes the values have been binned into the categories established by the United Nations Environment
Programme: <0.03 hyper arid, 0.03–0.2 arid, 0.2–0.5 semi arid, 0.5–0.65 dry sub-humid, >0.65 humid. Cen. = Centotheceae, Cyp. = Cyperochloeae, Thy. =
Thysanolaeneae.

doi:10.1371/journal.pone.0151075.g004

Table 2. Results from the phylogenetic contrasts comparing range limits between C3 and C4 species in the climate data set containing 1307 pani-
coid grasses. The PGLS regressions were performed at subfamily level (Panicoideae), and in the tribes Paspaleae and Paniceae. The model with lowest
AIC value was selected as the best fitting model. P-values in bold indicate significant differences in means among C3 and C4 species. Branch lengths: 1: all
branch lengths equal; 2: length of internal branches from Bayesian trees, length of terminal branches mean of all terminals in Bayesian trees; 3: length of
internal branches as in 2, length of terminal branches mean of terminals in each individual clade of the Bayesian trees.

Clade variable Branch lengths best-fitting model estimated mean C3 estimated mean C4 C4 Relative to C3 P

Panicoideae AI max 1, 2, 3 Grafen 1.59 1.28 -0.30 0.0033

AI min 1, 2, 3 Grafen 0.64 0.46 -0.18 <0.0001

MTCQ max 1, 2, 3 Grafen 21.00 22.22 1.22 0.1073

MTCQ min 1, 2, 3 Grafen 13.99 13.12 -0.87 0.4618

MTWQ max 1, 2, 3 Grafen 26.56 28.17 1.61 <0.0001

MTWQ min 1, 2, 3 Grafen 20.71 21.09 0.38 0.5756

Paspaleae AI max 1, 2, 3 Grafen 1.60 1.50 -0.10 0.3711

AI min 1 Pagel 0.72 0.63 -0.09 0.05*

2 Pagel 0.72 0.63 -0.09 0.0518

3 Pagel 0.72 0.63 -0.09 0.0528

MTCQ max 1, 2, 3 Grafen 22.18 22.8800 0.70 0.3606

MTCQ min 1, 2, 3 Grafen 16.82 14.21 -2.61 0.045

MTWQ max 1, 2 Grafen 25.60 27.17 1.57 <0.0001

3 Pagel 25.67 27.08 1.41 <0.0001

MTWQ min 1, 2, 3 Grafen 20.84 20.73 -0.11 0.9045

Paniceae AI max 1 Pagel 1.51 1.05 -0.46 0.01

2 Pagel 1.54 1.08 -0.46 0.0206

3 Pagel 1.51 1.08 -0.43 0.025

AI min 1, 2, 3 Grafen 0.62 0.37 -0.25 <0.0001

MTCQ max 1 Pagel 19.79 21.05 1.26 0.3731

2 Pagel 20.18 21.44 1.26 0.3896

3 Pagel 19.90 21.46 1.56 0.3038

MTCQ min 1 Pagel 11.96 11.64 0.32 0.8647

2 Pagel 12.09 12.01 -0.08 0.9654

3 Pagel 12.05 12.16 0.11 0.9561

MTWQ max 1, 2, 3 Grafen 27.04 28.43 1.39 0.0105

MTWQ min 1 Pagel 21.00 21.65 0.65 0.4286

2, 3 Grafen 20.42 21.32 0.90 0.3309

*not significant under Grafen Delta AIC = 2.6.

doi:10.1371/journal.pone.0151075.t002
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be found in areas with low winter temperatures in North and South America, and the expan-
sion of C4 species into regions with low MTCQ is, in this study, supported as a general trend
within the tribe (Table 2).

Although expansion of C4 species into regions with low winter temperatures is only sup-
ported in the tribe Paspaleae, C4 panicoids are diverse in regions with subzero MTCQ (Fig 3).
In Paniceae both C3 and C4 lineage reach regions with subzero MTCQ and the minimum
MTCQ for both C3 and C4 species in Paniceae were notably lower that in Paspaleae (Table 2).
Most of the C3 panicoids that reach low temperatures do, however, belong to a single Nearctic
radiation of the genus Dichanthelium (Dichantheliinae, see Fig 3 and S2 Fig Phylogenetic tree),
which also includes the only C3 panicoids restricted to cold regions. Nearctic Dichanthelium
species may, nevertheless, prove to be restricted by the same temperature requirements as the
C4 species; their geographical northern limit concur with the C4 species, and in the climate
data set Dichanthelium only appears in regions where the growing season temperatures reach
the values reported for C4 species. Some phenological stages within the growing season may
therefore show to have conserved niches within the Panicoideae and restrict the distribution of
both C3 and C4 species, but phenological data must be included in niche studies to examine
this. At present, the climate data set suggests that C3 panicoids are not more successful than
their C4 relatives in cold climates and that more C4 than C3 panicoid lineages have reached
cold regions. This is in agreement with recent ecophysiological studies that suggest C4 species
have no intrinsic barrier to developing freezing tolerance, and that in some ecosystems the
chance of developing freezing resistance may depend more on the capacity for drought resis-
tance than on photosynthetic pathway [64,65].

Paspaleae constitutes the grass tribe with the highest number of closely related C3 and C4

lineages; it contains nearly half of the C3! C4 transitions in Panicoideae, and includes the
most species rich C4 genus of the grass family, Paspalum. Yet, in the tribe Paspaleae, the
response to a change in the photosynthetic pathway differed from what was supported at sub-
family level and within the cosmopolitan tribe Paniceae. Lundgren et al. [21] who studied the
response of a transition in the photosynthetic pathway within the species Alloteropsis semialata
(tribe Paniceae), found that C4 photosynthesis acted as a niche opener, which allowed the C4

specimens to occupy a wide range of new environments. Given enough time, speciation within
the broader C4 niche could lead to specialization to some of these new environments. How tax-
onomic groups respond to a change in the photosynthetic pathway is therefore not only condi-
tioned by the physiological advantages of the C4 syndrome but also by the genetic background
of the C3 species that gave rise to a given C4 lineage [66,67], by the time since the transition
[21], and by the availability, proximity, and extension of new niches [68].

The Paspaleae C4 species have expanded their niches into warmer—but not dryer–climates,
and into regions with lower winter temperatures (Table 2). This distribution pattern supports
that the common observed niche expansion of C4 grasses into arid macro-climates may be a
delayed response, which only relates indirectly to C4 photosynthesis and requires further trait
evolution [26]. The American tribe Paspaleae is most diverse in the Neotropics [23] where arid
regions with summer rain are of relatively limited extension compared arid regions in Australia
and Africa. Species from the older cosmopolite C4 grass subfamilies Chloridoideae and Aristi-
doideae are common in these arid parts of America, but within Paspaleae only a few C4 species
reach arid sites (Fig 4). While the American continent is relatively humid, compared to Africa
and Australia, the Andes chain provides a 7000 km long steep temperature gradient that runs
through all of South American. The different response to C4 photosynthesis found within Pas-
paleae may simply reflect that several of the C3! C4 transitions within Paspaleae seem to be of
relatively young ages (see [10] and references therein), and that the composition and exten-
sions of available niches in America differ from those found in other tropical continent.
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In the climate data set (S1 Table), several closely related C3 and C4 Paspaleae species have
nearly identical macro-climatic ranges and most of these are found in the Neotropical savan-
nah system. Recent macroecological studies suggest that C4 species are closely related to C3

species from shaded habitats [3,18]. However, the Neotropical savannah system is a mosaic
landscape with patches of open grassland, savannah, and gallery forests [69], and grasses from
shaded or open habitats are sympatric at a macroecological scale (e.g., [70]). Field observations,
not macroecological analyses, must therefore address whether the C3!C4 transitions correlate
with habitat shifts within these savannahs. It should also be noted that several of the Neotropi-
cal C3 panicoids are open habitat species that occupy the well drained part of the savannah,
some are fire resistant, and some are robust tussock grasses that may be locally dominant
[71,72]. Which characters allowed the C3 species to invade open environments is unclear. Fre-
quent shifts between open and shaded habitats happen in nearly all panicoid subtribes (see S2
Fig Phylogenetic tree), and functional traits related to leaf form, rather than photosynthetic
pathway, have been found to correlate with such habitat shifts in subtropical grasses [73].

Conclusions
In all, C4 panicoid conform to the known distribution patterns observed for C4 species at a global
scale. C4 panicoids occupy significant hotter and dryer regions than their closest C3 relatives, and
may also reach colder ones as long as the growing season temperatures are high enough. How-
ever, by comparing climatic extremes rather than diversity patterns or climatic values of centre
populations, we found that these distribution patterns have been formed by a mixture of niche
expansions, niche changes, and niche stasis among the C4 panicoids. Only niche expansion into
hotter climate was a ubiquitous response to evolution of C4 photosynthesis within the subfamily,
while the remaining patterns varied among subtribes and taxonomic level. This supports recent
analyses suggesting that the ecophysiological advantages of the C4 syndrome act as a niche
opener, which improve chance of survival after long distance dispersal [21]. Which new environ-
ments become colonized is then dependent both on the species inherited niche as well as avail-
able habitats and the history of chance dispersal within each C4 lineage.
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