20 research outputs found

    Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly

    Full text link
    Cereal crops such as wheat and maize have large repeat-rich genomes that make cloning of individual genes challenging. Moreover, gene order and gene sequences often differ substantially between cultivars of the same crop species. A major bottleneck for gene cloning in cereals is the generation of high-quality sequence information from a cultivar of interest. In order to accelerate gene cloning from any cropping line, we report 'targeted chromosome-based cloning via long-range assembly' (TACCA). TACCA combines lossless genome-complexity reduction via chromosome flow sorting with Chicago long-range linkage to assemble complex genomes. We applied TACCA to produce a high-quality (N50 of 9.76 Mb) de novo chromosome assembly of the wheat line CH Campala Lr22a in only 4 months. Using this assembly we cloned the broad-spectrum Lr22a leaf-rust resistance gene, using molecular marker information and ethyl methanesulfonate (EMS) mutants, and found that Lr22a encodes an intracellular immune receptor homologous to the Arabidopsis thaliana RPM1 protein

    Photometric study of the very short period shallow contact binary DD Comae Berenices

    No full text
    The first photometric solutions of the very short period (VSP) close binary DD Comae Berenices (P = 0fd26920811) based on our new complete (IR)C light curves are derived by the 2003 version Wilson-Van Hamme code. They show that the system belongs to shallow contact W-type W UMa systems with a degree of overcontact of 8.7%. The observed light curve distortions are explained by employing the spots model due to the late-type nature of both components. We have collected all available photometric data about the system with emphasis on the individual observational data, which we treated simultaneously using our own method based on the usage of computed model light curves as templates. We recalculated published times of light minimum and added new ones of our own to construct an O – C diagram that spans over 70 years. Using a least squares method orthogonal quadratic model function, we found that the orbital period of DD Com is continuously increasing with P˙=0.00401(22)\dot{P}=0.00401(22) s yr–1. The period increase may be caused by the mass transfer from the less-massive component to the more-massive one. With the period increase, the binary is evolving from the present shallow contact phase to the broken stage predicted by the thermal relaxation oscillation (TRO) theory. Compared with other VSP systems, DD Com is a rare system that lies on the expanding phase of the TRO cycle. Until now, only four such systems including DD Com are found in this stage. Thus, this target is another good observational proof of the TRO theory in a very short period region

    Geographic data as personal data in four EU member states

    No full text
    The EU Directive 95/46/EC on the protection of individuals with regard to the processing of personal data and on the free movement of such data aims at harmonising data protection legislation in the European Union. This should promote the free flow of products and services within the EU. This research found a wide variety of interpretations of the application of data protection legislation to geographic data. The variety was found among the different EU Member States, the different stakeholders and the different types ofgeographic data. In the Netherlands, the Data Protection Authority (DPA) states that panoramic images of streets are considered personal data. While Dutch case law judges that the data protection legislation does not apply if certain features are blurred and no link to an address is provided. The topographic datasets studied in the case studies do not contain personal data, according to theDutch DPA, while the German DPA and the Belgian DPA judge that topographic maps of a large scale can contain personal data, and impose conditions on the processing of topographic maps. The UK DPA does consider this data outside of the scope of legal definition of personal data. The patchwork of differences in data protection legislation can be harmonised by using a traffic lightmodel. This model focuses on the context in which the processing of the data takes place and has four categories of data: (1) sensitive personal data, (2) personal data, (3), data that can possibly lead to identification, and (4) non-personal data. For some geographic data, for example factual data that does not reveal sensitive information about a person, can be categorised in the thirdcategory giving room to opening up data under the INSPIRE Directive
    corecore