110 research outputs found

    “One Ring to Bind Them All”—Part II: Identification of Promising G-Quadruplex Ligands by Screening of Cyclophane-Type Macrocycles

    Get PDF
    A collection of 26 polyammonium cyclophane-type macrocycles with a large structural diversity has been screened for G-quadruplex recognition. A two-step selection procedure based on the FRET-melting assay was carried out enabling identification of macrocycles of high affinity (ΔT1/2 up to 30°C) and high selectivity for the human telomeric G-quadruplex. The four selected hits possess sophisticated architectures, more particularly the presence of a pendant side-arm as well as the existence of a particular topological arrangement appear to be strong determinants of quadruplex binding. These compounds are thus likely to create multiple contacts with the target that may be at the origin of their high selectivity, thereby suggesting that this class of macrocycles offers unique advantages for targeting G-quadruplex-DNA

    “One Ring to Bind Them All”—Part I: The Efficiency of the Macrocyclic Scaffold for G-Quadruplex DNA Recognition

    Get PDF
    Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the “standard” B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding macrocycles described so far (telomestatin-like polyheteroarenes, porphyrins and derivatives, polyammonium cyclophanes), and in addressing both synthetic issues and biological aspects

    Hetero-cycloreversions Mediated by Photoinduced Electron Transfer

    Full text link
    [EN] Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C=X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.Financial support from the Spanish Government (Grants CTQ2010-14882, SEV2012-0267, and JCI-2010-06204) and the Generalitat Valenciana (Prometeo II/2013/005) is gratefully acknowledged.Pérez Ruiz, R.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research. 47(4):1359-1368. https://doi.org/10.1021/ar4003224S1359136847

    Pyridoacridines in the 21st Century

    Get PDF
    This minireview summarizes the work developed during this Century with compounds containing the pyridoacridine scaffold in its different isomeric forms. The isolation of natural products, syntheses, bioactivities, chelation capacity, and other properties of compounds containing this framework are discussed. For reasons of length, only compounds containing a maximum of seven condensed rings have been considered, with a few exceptions

    Thorium target thickness from radioactivity measurement

    No full text

    Sneaking a peek into the construction zone

    No full text
    Student work for an MLAS course at Vanderbilt University. An image of an artistic assemblage depicting a construction site, people watching the construction and cars driving past it. The work utilizes found objects. The assemblage was created by Lewis Saettel in MLAS 260 70: Found and Fabricated: Creativity & Object-Making, taught by Michael Aurbach, Summer 2008.College of Arts and Scienc

    Vandopoly board

    No full text
    Student work for an MLAS course at Vanderbilt University. An image of a game board in the style of Monopoly, but with a Vanderbilt theme. The work was created by Lewis Saettel in MLAS 260 70: Found and Fabricated: Creativity & Object-Making, taught by Michael Aurbach, Summer 2008.College of Arts and Scienc

    Inside Vandy

    No full text
    Student work for an MLAS course at Vanderbilt University. Three images (different views) of an artistic assemblage. The work utilizes found objects. The assemblage was created by Lewis Saettel in MLAS 260 70: Found and Fabricated: Creativity & Object-Making, tuaght by Michael Aurbach, Summer 2008.College of Arts and Scienc

    ChemInform Abstract: Pericyclic Reactions of Radical Cations

    No full text
    corecore