98 research outputs found

    Lifetime occupational exposure to metals and welding fumes, and risk of glioma: a 7-country population-based case–control study

    Get PDF
    Background: Brain tumor etiology is poorly understood. Based on their ability to pass through the blood–brain barrier, it has been hypothesized that exposure to metals may increase the risk of brain cancer. Results from the few epidemiological studies on this issue are limited and inconsistent. Methods: We investigated the relationship between glioma risk and occupational exposure to five metals - lead, cadmium, nickel, chromium and iron- as well as to welding fumes, using data from the seven-country INTEROCC study. A total of 1800 incident glioma cases and 5160 controls aged 30–69 years were included in the analysis. Lifetime occupational exposure to the agents was assessed using the INTEROCC JEM, a modified version of the Finnish job exposure matrix FINJEM. Results: In general, cases had a slightly higher prevalence of exposure to the various metals and welding fumes than did controls, with the prevalence among ever exposed ranging between 1.7 and 2.2% for cadmium to 10.2 and 13.6% for iron among controls and cases, respectively. However, in multivariable logistic regression analyses, there was no association between ever exposure to any of the agents and risk of glioma with odds ratios (95% confidence intervals) ranging from 0.8 (0.7–1.0) for lead to 1.1 (0.7–1.6) for cadmium. Results were consistent across models considering cumulative exposure or duration, as well as in all sensitivity analyses conducted. Conclusions: Findings from this large-scale international study provide no evidence for an association between occupational exposure to any of the metals under scrutiny or welding fumes, and risk of glioma

    The Intracranial Distribution of Gliomas in Relation to Exposure From Mobile Phones: Analyses From the INTERPHONE Study

    Get PDF
    When investigating the association between brain tumors and use of mobile telephones, accurate data on tumor position are essential, due to the highly localized absorption of energy in the human brain from the radio-frequency fields emitted. We used a point process model to investigate this association using information that included tumor localization data from the INTERPHONE Study (Australia, Canada, Denmark, Finland, France, Germany, Israel, Italy, Japan, New Zealand, Norway, Sweden, and the United Kingdom). Our main analysis included 792 regular mobile phone users diagnosed with a glioma between 2000 and 2004. Similar to earlier results, we found a statistically significant association between the intracranial distribution of gliomas and the self reported location of the phone. When we accounted for the preferred side of the head not being exclusively used for all mobile phone calls, the results were similar. The association was independent of the cumulative call time and cumulative number of calls. However, our model used reported side of mobile phone use, which is potentially influenced by recall bias. The point process method provides an alternative to previously used epidemiologic research designs when one is including localization in the investigation of brain tumors and mobile phone use

    Diagnostic radiological examinations and risk of intracranial tumours in adults-findings from the Interphone Study.

    Get PDF
    Background Exposure to high doses of ionizing radiation is among the few well-established brain tumour risk factors. We used data from the Interphone study to evaluate the effects of exposure to low-dose radiation from diagnostic radiological examinations on glioma, meningioma and acoustic neuroma risk. Methods Brain tumour cases (2644 gliomas, 2236 meningiomas, 1083 neuromas) diagnosed in 2000-02 were identified through hospitals in 13 countries, and 6068 controls (population-based controls in most centres) were included in the analysis. Participation across all centres was 64% for glioma cases, 78% for meningioma cases, 82% for acoustic neuroma cases and 53% for controls. Information on previous diagnostic radiological examinations was obtained by interviews, including the frequency, timing and indication for the examinations. Typical brain doses per type of examination were estimated based on the literature. Examinations within the 5 years before the index date were excluded from the dose estimation. Adjusted odds ratios were estimated using conditional logistic regression. Results No materially or consistently increased odds ratios for glioma, meningioma or acoustic neuroma were found for any specific type of examination, including computed tomography of the head and cerebral angiography. The only indication of an elevated risk was an increasing trend in risk of meningioma with the number of isotope scans, but no such trends for other examinations were observed. No gradient was found in risk with estimated brain dose. Age at exposure did not substantially modify the findings. Sensitivity analyses gave results consistent with the main analysis. Conclusions There was no consistent evidence for increased risks of brain tumours with X-ray examinations, although error from selection and recall bias cannot be completely excluded. A cautious interpretation is warranted for the observed association between isotope scans and meningioma

    Targeted Sequencing in Chromosome 17q Linkage Region Identifies Familial Glioma Candidates in the Gliogene Consortium

    Get PDF
    Glioma is a rare, but highly fatal, cancer that accounts for the majority of malignant primary brain tumors. Inherited predisposition to glioma has been consistently observed within non-syndromic families. Our previous studies, which involved non-parametric and parametric linkage analyses, both yielded significant linkage peaks on chromosome 17q. Here, we use data from next generation and Sanger sequencing to identify familial glioma candidate genes and variants on chromosome 17q for further investigation. We applied a filtering schema to narrow the original list of 4830 annotated variants down to 21 very rare (,0.1% frequency), non-synonymous variants. Our findings implicate the MYO19 and KIF18B genes and rare variants in SPAG9 and RUNDC1 as candidates worthy of further investigation. Burden testing and functional studies are planned

    The MOBI-Kids Study Protocol: Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk

    Get PDF
    The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case-control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communications technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10-24 years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF exposure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges. This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: (1) the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to low response rates among population controls; (2) investigating a young study population spanning a relatively wide age range; (3) conducting a large, multinational epidemiological study, while adhering to increasingly stricter ethics requirements; (4) investigating a rare and potentially fatal disease; and (5) assessing exposure to EMF from communication technologies. Our experience in thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people
    • …
    corecore