61 research outputs found

    A microfibril assembly assay identifies different mechanisms of dominance underlying Marfan syndrome, stiff skin syndrome and acromelic dysplasias

    Get PDF
    Fibrillin-1 is the major component of the 10–12 nm diameter extracellular matrix microfibrils. The majority of mutations affecting the human fibrillin-1 gene, FBN1, result in Marfan syndrome (MFS), a common connective tissue disorder characterised by tall stature, ocular and cardiovascular defects. Recently, stiff skin syndrome (SSS) and a group of syndromes known collectively as the acromelic dysplasias, which typically result in short stature, skin thickening and joint stiffness, have been linked to FBN1 mutations that affect specific domains of the fibrillin-1 protein. Despite their apparent phenotypic differences, dysregulation of transforming growth factor β (TGFβ) is a common factor in all of these disorders. Using a newly developed assay to track the secretion and incorporation of full-length, GFP-tagged fibrillin-1 into the extracellular matrix, we investigated whether or not there were differences in the secretion and microfibril assembly profiles of fibrillin-1 variants containing substitutions associated with MFS, SSS or the acromelic dysplasias. We show that substitutions in fibrillin-1 domains TB4 and TB5 that cause SSS and the acromelic dysplasias do not prevent fibrillin-1 from being secreted or assembled into microfibrils, whereas MFS-associated substitutions in these domains result in a loss of recombinant protein in the culture medium and no association with microfibrils. These results suggest fundamental differences in the dominant pathogenic mechanisms underlying MFS, SSS and the acromelic dysplasias, which give rise to TGFβ dysregulation associated with these diseases

    Stochastic ionization through noble tori: Renormalization results

    Full text link
    We find that chaos in the stochastic ionization problem develops through the break-up of a sequence of noble tori. In addition to being very accurate, our method of choice, the renormalization map, is ideally suited for analyzing properties at criticality. Our computations of chaos thresholds agree closely with the widely used empirical Chirikov criterion

    The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya) — optical dating of early human occupation during Marine Isotope Stages 4, 5 and 6

    Get PDF
    The paper presents the results of optical dating of potassium-rich feldspar grains obtained from the Haua Fteah cave in Cyrenaica, northeast Libya, focussing on the chronology of the Deep Sounding excavated by Charles McBurney in the 1950s and reexcavated recently. Samples were also collected from a 1.25 m-deep trench (Trench S) excavated during the present project below the basal level of the Deep Sounding. Optically stimulated luminescence (OSL) data sets for multi-grain, single aliquots of quartz for samples from the Middle Trench were previously published. Re-analyses of these OSL data confirm significant variation in the dose saturation levels of the quartz signal, but allow the most robust OSL ages to be determined for comparison with previous age estimates and with those obtained in this study for potassium-rich feldspars from the Deep Sounding. The latter indicate that humans may have started to visit the cave as early as ~150 ka ago, but that major use of the cave occurred during MIS 5, with the accumulation of the Deep Sounding sediments. Correlations between optical ages and episodes of “Pre-Aurignacian” artefact discard indicate that human use of the cave during MIS 5 was highly intermittent. The earliest phases of human activity appear to have occurred during interstadial conditions (5e and 5c), with a later phase of lithic discard associated with more stadial conditions, possibly MIS 5b. We argue that the “Pre-Aurignacian” assemblage can probably be linked with modern humans, like the succeeding “Levalloiso-Mousterian” assemblage; two modern human mandibles associated with the latter are associated with a modelled age of 73–65 ka. If this attribution is correct, then the new chronology implies that modern humans using “Pre-Aurignacian” technologies were in Cyrenaica as early as modern humans equipped with “Aterian” technologies were in the Maghreb, raising new questions about variability among lithic technologies during the initial phases of modern human dispersals into North Africa

    The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2)

    Get PDF
    The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation – GEBCO Seabed 2030 Project supporting the goal of mapping the world’s oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S

    The effectiveness of home versus community-based weight control programmes initiated soon after breast cancer diagnosis: a randomised controlled trial

    Get PDF
    BackgroundBreast cancer diagnosis may be a teachable moment for lifestyle behaviour change and to prevent adjuvant therapy associated weight gain. We assessed the acceptability and effectiveness of two weight control programmes initiated soon after breast cancer diagnosis to reduce weight amongst overweight or obese women and prevent gains in normal-weight women.MethodsOverweight or obese (n?=?243) and normal weight (n?=?166) women were randomised to a three-month unsupervised home (home), a supervised community weight control programme (community) or to standard written advice (control). Primary end points were change in weight and body fat at 12 months. Secondary end points included change in insulin, cardiovascular risk markers, quality of life and cost-effectiveness of the programmes.ResultsForty-three percent of eligible women were recruited. Both programmes reduced weight and body fat: home vs. control mean (95% CI); weight ?2.3 (?3.5, ?1.0) kg, body fat ?1.6 (?2.6, ?0.7) kg, community vs. control; weight ?2.4 (?3.6, ?1.1) kg, body fat ?1.4 (?2.4, ?0.5) kg (all p?<?0.001). The community group increased physical activity, reduced insulin, cardiovascular disease risk markers, increased QOL and was cost-effective.ConclusionsThe programmes were equally effective for weight control, but the community programme had additional benefits.Clinical trial registrationISRCTN6857614

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    New insights into the structure, assembly and biological roles of 10–12 nm connective tissue microfibrils from fibrillin-1 studies

    No full text
    The 10–12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β (TGFβ). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10–12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10–12 nm diameter microfibril and perform such diverse role

    Model-Based Implementation of Real-Time Systems

    No full text
    corecore