49 research outputs found

    Paradoxical Role of an Egr Transcription Factor Family Member, Egr2/Krox20, in Learning and Memory

    Get PDF
    It is well established that Egr1/zif268, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memories. Recently, the Egr3 family member has also been implicated in learning and memory. Because Egr family members encode closely related zinc-finger transcription factors sharing a highly homologous DNA binding domain that recognises the same DNA sequence, they may have related functions in brain. Another Egr family member expressed in brain, Egr2/Krox20 is known to be crucial for normal hindbrain development and has been implicated in several inherited peripheral neuropathies; however, due to Egr2-null mice perinatal lethality, its potential role in cognitive functions in the adult has not been yet explored. Here, we generated Egr2 conditional mutant mice allowing postnatal, forebrain-specific Cre-mediated Egr2 excision and tested homozygous, heterozygous and control littermates on a battery of behavioural tasks to evaluate motor capacity, exploratory behaviour, emotional reactivity and learning and memory performance in spatial and non-spatial tasks. Egr2-deficient mice had no sign of locomotor, exploratory or anxiety disturbances. Surprisingly, they also had no impairment in spatial learning and memory, taste aversion memory or fear memory using a trace conditioning paradigm. On the contrary, Egr2-deficient mice had improved performance in motor learning on a rotarod, and in object recognition memory. These results clearly do not extend the phenotypic consequences resulting from either Egr1 or Egr3 loss-of-function to Egr2. In contrast, they indicate that Egr family members may have different, and in certain circumstances antagonistic functions in the adult brain

    Distinct Functions of Egr Gene Family Members in Cognitive Processes

    Get PDF
    The different gene members of the Egr family of transcriptional regulators have often been considered to have related functions in brain, based on their co-expression in many cell-types and structures, the relatively high homology of the translated proteins and their ability to bind to the same consensus DNA binding sequence. Recent research, however, suggest this might not be the case. In this review, we focus on the current understanding of the functional roles of the different Egr family members in learning and memory. We briefly outline evidence from mutant mice that Egr1 is required specifically for the consolidation of long-term memory, while Egr3 is primarily essential for short-term memory. We also review our own recent findings from newly generated forebrain-specific conditional Egr2 mutant mice, which revealed that Egr2, as opposed to Egr1 and Egr3, is dispensable for several forms of learning and memory and on the contrary can act as an inhibitory constraint for certain cognitive functions. The studies reviewed here highlight the fact that Egr family members may have different, and in certain circumstances antagonistic functions in the adult brain

    Genome wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability

    Get PDF
    International audienceGenomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways

    A collaborative model to implement flexible, accessible and efficient oncogenetic services for hereditary breast and ovarian cancer : the C-MOnGene study

    Get PDF
    Medical genetic services are facing an unprecedented demand for counseling and testing for hereditary breast and ovarian cancer (HBOC) in a context of limited resources. To help resolve this issue, a collaborative oncogenetic model was recently developed and implemented at the CHU de Québec-Université Laval; Quebec; Canada. Here, we present the protocol of the C-MOnGene (Collaborative Model in OncoGenetics) study, funded to examine the context in which the model was implemented and document the lessons that can be learned to optimize the delivery of oncogenetic services. Within three years of implementation, the model allowed researchers to double the annual number of patients seen in genetic counseling. The average number of days between genetic counseling and disclosure of test results significantly decreased. Group counseling sessions improved participants' understanding of breast cancer risk and increased knowledge of breast cancer and genetics and a large majority of them reported to be overwhelmingly satisfied with the process. These quality and performance indicators suggest this oncogenetic model offers a flexible, patient-centered and efficient genetic counseling and testing for HBOC. By identifying the critical facilitating factors and barriers, our study will provide an evidence base for organizations interested in transitioning to an oncogenetic model integrated into oncology care; including teams that are not specialized but are trained in genetics

    2017 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1004/thumbnail.jp

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Efficacité relative des grilles de correction d'un test de jugement situationnel pour la sélection du personnel de centres d'appels

    Get PDF
    Dans le domaine des centres d’appels, l’affectation d’agents au service Ă  la clientĂšle efficaces et satisfaits reprĂ©sente une activitĂ© cruciale pour toute direction dĂ©diĂ©e aux ressources humaines de ces unitĂ©s d’affaires. Or, pour parvenir Ă  prendre de bonnes dĂ©cisions d’embauche et de rejet, des instruments de mesure et d’évaluation des compĂ©tences sont souvent mis Ă  contribution. À cet effet, les tests de jugement situationnel (TJS) sont de plus en plus utilisĂ©s pour la sĂ©lection du personnel. L’objet de cette thĂšse est donc de vĂ©rifier l’efficacitĂ© relative des diffĂ©rentes mĂ©thodes d’élaboration des grilles de correction des TJS. En effet, jusqu’à prĂ©sent, trois mĂ©thodes ont Ă©tĂ© privilĂ©giĂ©es par les concepteurs de tests (Weekley, Ployhart, & Holtz, 2006) : (1) l’approche rationnelle ou thĂ©orique (2) l’approche empirique et (3) le recours Ă  des experts. La possibilitĂ© qu’une combinaison de ces diffĂ©rentes approches puisse conduire Ă  de meilleurs rĂ©sultats est Ă©galement explorĂ©e. Pour y parvenir, le rĂ©sultat total obtenu Ă  un TJS a Ă©tĂ© mis en lien avec une Ă©valuation du rendement global effectuĂ©e par un supĂ©rieur immĂ©diat en y appliquant huit grilles de correction diffĂ©rentes. Au total, un Ă©chantillon de 312 employĂ©s Ɠuvrant dans des emplois de tĂ©lĂ©opĂ©rateurs au sein d’une grande institution financiĂšre quĂ©bĂ©coise ont participĂ© Ă  cette recherche. Dans l’ensemble, les rĂ©sultats indiquent qu’une approche empirique permet gĂ©nĂ©ralement d’obtenir de meilleures statistiques descriptives en termes de distribution et de dispersion des scores pour un processus de sĂ©lection. Cependant, des analyses corrĂ©lationnelles indiquent qu’une approche multiple ou mĂ©thode hybride, basĂ©e sur une intĂ©gration des informations fournies par diffĂ©rentes sources d’informations (empirique, thĂ©orique et basĂ© sur les experts) pour l’élaboration d’une grille de correction d’un TJS, permet de mieux prĂ©dire le rendement des employĂ©s (r=0,247**) comparativement Ă  l’utilisation de la thĂ©orie pour dĂ©finir les attentes (r=0,162**), le recours Ă  des experts de contenu Ɠuvrant dans le domaine de pratique (r=0,164**) ou l’utilisation d’une approche empirique (r=0,154*). Mots clĂ©s : Test de jugement situationnel, grilles de correction, validitĂ© critĂ©riĂ©e, centre d’appels

    Patient Engagement Gone Wrong

    No full text
    corecore