271 research outputs found

    An Experimental Study of Structural Diversity in Social Networks

    Full text link
    Several recent studies of online social networking platforms have found that adoption rates and engagement levels are positively correlated with structural diversity, the degree of heterogeneity among an individual's contacts as measured by network ties. One common theory for this observation is that structural diversity increases utility, in part because there is value to interacting with people from different network components on the same platform. While compelling, evidence for this causal theory comes from observational studies, making it difficult to rule out non-causal explanations. We investigate the role of structural diversity on retention by conducting a large-scale randomized controlled study on the Twitter platform. We first show that structural diversity correlates with user retention on Twitter, corroborating results from past observational studies. We then exogenously vary structural diversity by altering the set of network recommendations new users see when joining the platform; we confirm that this design induces the desired changes to network topology. We find, however, that low, medium, and high structural diversity treatment groups in our experiment have comparable retention rates. Thus, at least in this case, the observed correlation between structural diversity and retention does not appear to result from a causal relationship, challenging theories based on past observational studies.Comment: To appear in the Proceedings of International AAAI Conference on Web and Social Media (ICWSM 2020

    The C. elegans tailless/Tlx homolog nhr-67 regulates a stage-specific program of linker cell migration in male gonadogenesis

    Get PDF
    Cell migration is a common event during organogenesis, yet little is known about how migration is temporally coordinated with organ development. We are investigating stage-specific programs of cell migration using the linker cell (LC), a migratory cell crucial for male gonadogenesis of C. elegans. During the L3 and L4 larval stages of wild-type males, the LC undergoes changes in its position along the migratory route, in transcriptional regulation of the unc-5 netrin receptor and zmp-1 zinc matrix metalloprotease, and in cell morphology. We have identified the tailless homolog nhr-67 as a cell-autonomous, stage-specific regulator of timing in LC migration programs. In nhr-67-deficient animals, each of the L3 and L4 stage changes is either severely delayed or never occurs, yet LC development before the early L3 stage or after the mid-L4 stage occurs with normal timing. We propose that there is a basal migration program utilized throughout LC migration that is modified by stage-specific regulators such as nhr-67

    Reduction of Mitoferrin Results in Abnormal Development and Extended Lifespan in Caenorhabditis elegans

    Get PDF
    Iron is essential for organisms. It is mainly utilized in mitochondria for biosynthesis of iron-sulfur clusters, hemes and other cofactors. Mitoferrin 1 and mitoferrin 2, two homologues proteins belonging to the mitochondrial solute carrier family, are required for iron delivery into mitochondria. Mitoferrin 1 is highly expressed in developing erythrocytes which consume a large amount of iron during hemoglobinization. Mitoferrin 2 is ubiquitously expressed, whose functions are less known. Zebrafish with mitoferrin 1 mutation show profound hypochromic anaemia and erythroid maturation arrests, and yeast with defects in MRS3/4, the counterparts of mitoferrin 1/2, has low mitochondrial iron levels and grows poorly by iron depletion. Mitoferrin 1 expression is up-regulated in yeast and mouse models of Fiedreich's ataxia disease and in human cell culture models of Parkinson disease, suggesting its involvement in the pathogenesis of diseases with mitochondrial iron accumulation. In this study we found that reduced mitoferrin levels in C. elegans by RNAi treatment causes pleiotropic phenotypes such as small body size, reduced fecundity, slow movement and increased sensitivity to paraquat. Despite these abnormities, lifespan was increased by 50% to 80% in N2 wild type strain, and in further studies using the RNAi sensitive strain eri-1, more than doubled lifespan was observed. The pathways or mechanisms responsible for the lifespan extension and other phenotypes of mitoferrin RNAi worms are worth further study, which may contribute to our understanding of aging mechanisms and the pathogenesis of iron disorder related diseases

    Solution structure of stem-loop α of the hepatitis B virus post-transcriptional regulatory element

    Get PDF
    Chronic hepatitis B virus (HBV) infections may lead to severe diseases like liver cirrhosis or hepatocellular carcinoma (HCC). The HBV post-transcriptional regulatory element (HPRE) facilitates the nuclear export of unspliced viral mRNAs, contains a splicing regulatory element and resides in the 3′-region of all viral transcripts. The HPRE consists of three sub-elements α (nucleotides 1151–1346), β1 (nucleotides 1347–1457) and β2 (nucleotides 1458–1582), which confer together full export competence. Here, we present the NMR solution structure (pdb 2JYM) of the stem-loop α (SLα, nucleotides 1292–1321) located in the sub-element α. The SLα contains a CAGGC pentaloop highly conserved in hepatoviruses, which essentially adopts a CUNG-like tetraloop conformation. Furthermore, the SLα harbours a single bulged G residue flanked by A-helical regions. The structure is highly suggestive of serving two functions in the context of export of unspliced viral RNA: binding sterile alpha motif (SAM-) domain containing proteins and/or preventing the utilization of a 3′-splice site contained within SLα

    Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements

    Get PDF
    It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed. (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge.CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection

    Cardioembolic Stroke in Atrial Fibrillation-Rationale for Preventive Closure of the Left Atrial Appendage

    Get PDF
    Atrial fibrillation is the most common cardiac arrhythmias, and a major cause of morbidity and mortality due to cardioembolic stroke. The left atrial appendage is the major site of thrombus formation in non-valvular atrial fibrillation. Loss of atrial systole in atrial fibrillation and increased relative risk of associated stroke point strongly toward a role for stasis of blood in left atrial thrombosis, although thrombus formation is multifactorial, and much more than blood flow irregularities are implicated. Oral anticoagulation with vitamin-K-antagonists is currently the most effective prophylaxis for stroke in atrial fibrillation. Unfortunately, this treatment is often contraindicated, particularly in the elderly, in whom risk of stroke is high. Moreover, given the risk of major bleeding, there is reason to be skeptical of the net benefit when warfarin is used in those patients. This work reviews the pathophysiology of cardioembolic stroke and critically spotlights the current status of preventive anticoagulation therapy. Various techniques to exclude the left atrial appendage from circulation were discussed as a considerable alternative for stroke prophylaxis

    Zinc Finger Nuclease mediated knockout of ADP dependent Glucokinase in Cancer cell lines: Effects on cell survival and Mitochondrial Oxidative Metabolism

    Get PDF
    <div><p>Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of <i>ADPGK</i>, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of <i>ADPGK,</i> and were ADPGK-null by immunoblotting. <i>ADPGK</i> knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when <i>ADPGK</i> was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of <i>ADPGK</i> in HCT116 cells caused few changes in global gene expression, knockout of <i>ADPGK</i> in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the <i>ADPGK</i> knockouts, in some cases markedly so. Collectively, the results demonstrate that <i>ADPGK</i> can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of <i>ADPGK</i> is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.</p></div

    CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Get PDF
    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals

    Similarly Strong Purifying Selection Acts on Human Disease Genes of All Evolutionary Ages

    Get PDF
    A number of studies have showed that recently created genes differ from the genes created in deep evolutionary past in many aspects. Here, we determined the age of emergence and propensity for gene loss (PGL) of all human protein–coding genes and compared disease genes with non-disease genes in terms of their evolutionary rate, strength of purifying selection, mRNA expression, and genetic redundancy. The older and the less prone to loss, non-disease genes have been evolving 1.5- to 3-fold slower between humans and chimps than young non-disease genes, whereas Mendelian disease genes have been evolving very slowly regardless of their ages and PGL. Complex disease genes showed an intermediate pattern. Disease genes also have higher mRNA expression heterogeneity across multiple tissues than non-disease genes regardless of age and PGL. Young and middle-aged disease genes have fewer similar paralogs as non-disease genes of the same age. We reasoned that genes were more likely to be involved in human disease if they were under a strong functional constraint, expressed heterogeneously across tissues, and lacked genetic redundancy. Young human genes that have been evolving under strong constraint between humans and chimps might also be enriched for genes that encode important primate or even human-specific functions
    corecore