140 research outputs found
Recommended from our members
Torsional Alfvén resonances as an efficient damping mechanism for non-radial oscillations in red giant stars
Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields provide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically dominate, while rotation and magnetism are generally assumed to be weak perturbations and often ignored. However, observations of anomalously weak dipole mode amplitudes in red giant stars suggest that a substantial fraction of these are subject to an additional source of damping localized to their core region, with indirect evidence pointing to the role of a deeply buried magnetic field. It is also known that in many instances, the gravity-mode character of affected modes is preserved, but so far, no effective damping mechanism has been proposed that accommodates this aspect. Here we present such a mechanism, which damps the oscillations of stars harbouring magnetised cores via resonant interactions with standing Alfvén modes of high harmonic index. The damping rates produced by this mechanism are quantitatively on par with those associated with turbulent convection, and in the range required to explain observations, for realistic stellar models and magnetic field strengths. Our results suggest that magnetic fields can provide an efficient means of damping stellar oscillations without needing to disrupt the internal structure of the modes, and lay the groundwork for an extension of the theory of global stellar oscillations that incorporates these effects
HER2-family signalling mechanisms, clinical implications and targeting in breast cancer.
Approximately 20 % of human breast cancers (BC) overexpress HER2 protein, and HER2-positivity is associated with a worse prognosis. Although HER2-targeted therapies have significantly improved outcomes for HER2-positive BC patients, resistance to trastuzumab-based therapy remains a clinical problem. In order to better understand resistance to HER2-targeted therapies in HER2-positive BC, it is necessary to examine HER family signalling as a whole. An extensive literature search was carried out to critically assess the current knowledge of HER family signalling in HER2-positive BC and response to HER2-targeted therapy. Known mechanisms of trastuzumab resistance include reduced receptor-antibody binding (MUC4, p95HER2), increased signalling through alternative HER family receptor tyrosine kinases (RTK), altered intracellular signalling involving loss of PTEN, reduced p27kip1, or increased PI3K/AKT activity and altered signalling via non-HER family RTKs such as IGF1R. Emerging strategies to circumvent resistance to HER2-targeted therapies in HER2-positive BC include co-targeting HER2/PI3K, pan-HER family inhibition, and novel therapies such as T-DM1. There is evidence that immunity plays a key role in the efficacy of HER-targeted therapy, and efforts are being made to exploit the immune system in order to improve the efficacy of current anti-HER therapies. With our rapidly expanding understanding of HER2 signalling mechanisms along with the repertoire of HER family and other targeted therapies, it is likely that the near future holds further dramatic improvements to the prognosis of women with HER2-positive BC
Levels of different subtypes of tumour-infiltrating lymphocytes correlate with each other, with matched circulating lymphocytes, and with survival in breast cancer
Purpose:
Breast cancer tumour-infiltrating lymphocytes associate with clinico-pathological factors, including survival, although the literature includes many conflicting findings. Our aim was to assess these associations for key lymphocyte subtypes and in different tumour compartments, to determine whether these provide differential correlations and could, therefore, explain published inconsistencies. Uniquely, we also examine whether infiltrating levels merely reflect systemic lymphocyte levels or whether local factors are predominant in recruitment.
Methods:
Immunohistochemistry was used to detect tumour-infiltrating CD20+ (B), CD4+ (helper T), CD8+ (cytotoxic T) and FoxP3+ (regulatory T) cells in breast cancers from 62 patients, with quantification in tumour stroma, tumour cell nests, and tumour margins. Levels were analysed with respect to clinico-pathological characteristics and matched circulating levels (determined by flow-cytometry).
Results:
CD4+ lymphocytes were the most prevalent subtype in tumour stroma and at tumour edge and CD8+ lymphocytes were most prevalent in tumour nests; FoxP3+ lymphocytes were rarest in all compartments. High grade or hormone receptor negative tumours generally had significantly increased lymphocytes, especially in tumour stroma. Only intra-tumoural levels of CD8+ lymphocytes correlated significantly with matched circulating levels (p < 0.03), suggesting that recruitment is mainly unrelated to systemic activity. High levels of stromal CD4+ and CD20+ cells associated with improved survival in hormone receptor negative cases (p < 0.04), while tumour nest CD8+ and FoxP3+ cells associated with poor survival in hormone receptor positives (p < 0.005).
Conclusions:
Lymphocyte subtype and location define differential impacts on tumour biology, therefore, roles of tumour-infiltrating lymphocytes will only be unravelled through thorough analyses that take this into account
Patient Selection in One Anastomosis/Mini Gastric Bypass—an Expert Modified Delphi Consensus
Purpose: One anastomosis/mini gastric bypass (OAGB/MGB) is up to date the third most performed obesity and metabolic procedure worldwide, which recently has been endorsed by ASMBS. The main criticisms are the risk of bile reflux, esophageal cancer, and malnutrition. Although IFSO has recognized this procedure, guidance is needed regarding selection criteria. To give clinicians a daily support in performing the right patient selection in OAGB/MGB, the aim of this paper is to generate clinical guidelines based on an expert modified Delphi consensus.
Methods: A committee of 57 recognized bariatric surgeons from 24 countries created 69 statements. Modified Delphi consensus voting was performed in two rounds. An agreement/disagreement among ≥ 70.0% of the experts was considered to indicate a consensus.
Results: Consensus was achieved for 56 statements. Remarkably, ≥ 90.0% of the experts felt that OAGB/MGB is an acceptable and suitable option "in patients with Body mass index (BMI) > 70, BMI > 60, BMI > 50 kg/m2 as a one-stage procedure," "as the second stage of a two-stage bariatric surgery after Sleeve Gastrectomy for BMI > 50 kg/m2 (instead of BPD/DS)," and "in patients with weight regain after restrictive procedures. No consensus was reached on the statement that OAGB/MGB is a suitable option in case of resistant Helicobacter pylori. This is likely as there is a concern that this procedure is associated with reflux and its related long-term complications including risk of cancer in the esophagus or stomach. Also no consensus reached on OAGB/MGB as conversional surgery in patients with GERD after restrictive procedures. Consensus for disagreement was predominantly achieved "in case of intestinal metaplasia of the stomach" (74.55%), "in patients with severe Gastro Esophageal Reflux Disease (GERD)(C,D)" (75.44%), "in patients with Barrett's metaplasia" (89.29%), and "in documented insulinoma" (89.47%).
Conclusion: Patient selection in OAGB/MGB is still a point of discussion among experts. There was consensus that OAGB/MGB is a suitable option in elderly patients, patients with low BMI (30-35 kg/m2) with associated metabolic problems, and patients with BMIs more than 50 kg/m2 as one-stage procedure. OAGB/MGB can also be a safe procedure in vegetarian and vegan patients. Although OAGB/MGB can be a suitable procedure in patients with large hiatal hernia with concurrent hiatal hernia, it should not be offered to patients with grade C or D esophagitis or Barrett's metaplasia.info:eu-repo/semantics/publishedVersio
Nuclear Reprogramming: Kinetics of Cell Cycle and Metabolic Progression as Determinants of Success
Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development
Deficient Induction Response in a Xenopus Nucleocytoplasmic Hybrid
Defects in induction signaling and response underlie the nucleocytoplasmic incompatibility between two evolutionarily distant frog species, while specific treatments partially restore this response in explants and whole embryos
Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction
BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature
Measurement of D s <sup>±</sup> production asymmetry in pp collisions at √s=7 and 8 TeV
The inclusive production asymmetry is measured in collisions
collected by the LHCb experiment at centre-of-mass energies of
and 8 TeV. Promptly produced mesons are used, which decay as
, with . The measurement is
performed in bins of transverse momentum, , and rapidity, ,
covering the range GeV and . No kinematic
dependence is observed. Evidence of nonzero production asymmetry is
found with a significance of 3.3 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-010.htm
- …