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ABSTRACT
Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields pro-
vide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically
dominate, while rotation and magnetism are generally assumed to be weak perturbations and
often ignored. However, observations of anomalously weak dipole mode amplitudes in red
giant stars suggest that a substantial fraction of these are subject to an additional source of
damping localized to their core region, with indirect evidence pointing to the role of a deeply
buried magnetic field. It is also known that in many instances, the gravity-mode character of af-
fected modes is preserved, but so far, no effective damping mechanism has been proposed that
accommodates this aspect. Here we present such a mechanism, which damps the oscillations
of stars harbouring magnetised cores via resonant interactions with standing Alfvén modes
of high harmonic index. The damping rates produced by this mechanism are quantitatively
on par with those associated with turbulent convection, and in the range required to explain
observations, for realistic stellar models and magnetic field strengths. Our results suggest that
magnetic fields can provide an efficient means of damping stellar oscillations without needing
to disrupt the internal structure of the modes, and lay the groundwork for an extension of the
theory of global stellar oscillations that incorporates these effects.

Key words: MHD – methods: analytical – stars: interiors – stars: magnetic field – stars:
oscillations.

1 IN T RO D U C T I O N

Surface convection in many stars stochastically excites global oscil-
lations (normal modes), which can be detected through the intensity
fluctuations associated with temperature variations induced at the
stellar surface (Houdek & Dupret 2015). These normal modes can
be regarded as standing superpositions of waves associated with
restoring forces produced by pressure, buoyancy, the Coriolis force
(in the presence of rotation) and the Lorentz force (if the star har-
bours a magnetic field). Pressure and buoyancy effects dominate
energetically over those produced by rotation and magnetic fields,
and so to a first approximation, one identifies in the asymptotic limit
of high and low frequencies two types of modes: p modes, restored
mainly by pressure and associated with large surface displacements,
and g modes, restored mainly by buoyancy and associated with
large interior displacements (Deubner & Gough 1984). In reality,
and particularly in the case of evolved stars, modes are not purely
one type or the other but have mixed character, exhibiting large
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fluid displacements both near the surface and in the deep interior
(Osaki 1975).

The fluid displacement field ξ (r, t) at the point with position vec-
tor r associated with a normal mode of oscillation can be described
by a spatial amplitude function modulated by a time-harmonic com-
ponent exp(−iωt). If rotation and magnetic fields are weak, which
is the case for the vast majority of stars, then there is negligi-
ble departure of the stellar background from spherical symme-
try. This allows one to expand the spatial part in terms of vecto-
rial spherical harmonics, i.e. the overall fluid displacement can be
written as

ξ (r, t) = [
ξrY

m
� r̂ + ξh∇Ym

� + ξT r̂ × ∇Ym
�

]
exp(− iωt) , (1)

where we adopt spherical polar coordinates (r, θ , φ), and there
is an implicit summation over spherical harmonics Ym

� (θ, φ). Ra-
dial dependences are captured solely by the scalar functions ξr (r),
ξ h(r) and ξT(r), which describe displacements in three mutually
orthogonal directions for given � and m. The first two terms on
the right-hand side of equation (1) are collectively referred to as
the spheroidal components, while the third (involving ξT) is the
torsional component. Mathematically, spheroidal motions are those
for which (∇ × ξ )r = 0, with the subscript r denoting the radial
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component. Physically, these are motions that involve deformation
but no twist. Torsional motions have ∇ · ξ = 0, and correspond to
motions that involve twist but no deformation.

In the absence of rotation and magnetic fields, one can show
from the fluid equations of motion that for ω �= 0, ξT = 0, implying
that pressure and buoyancy are only capable of restoring spheroidal
motions. However, it is possible to access the third spatial degree
of freedom (torsional motions) in the presence of rotation and/or
magnetic fields. In this work, we ignore rotation. Our aim is to inves-
tigate the dynamical consequences of interactions between torsional
motions restored by the Lorentz force with the usual spheroidal (i.e.
p and g) modes. We deal with the limit where the magnetic field
is sufficiently weak such that it does not disrupt the structure of
the spheroidal modes. We find that resonant interactions between
the two types of modes can provide an efficient energy sink for
spheroidal motions. This source of damping may be potentially im-
portant for explaining the anomalously low amplitudes of non-radial
(particularly dipole) modes observed in some evolved stars.

The existence of red giant stars exhibiting low amplitudes of
their dipole (� = 1) modes was first reported by Mosser et al.
(2012a), accounting for roughly 20 per cent of their sample. For
the remainder, the higher amplitudes of their � = 1 modes are
consistent with the primary source of damping being convection
alone. Given that the red giant population appears to be divided
into those with either high or low � = 1 mode amplitudes, with
relatively few intermediate cases, we shall refer to this as the dipole
dichotomy problem. While the frequencies of the low-amplitude
� = 1 modes are close to those predicted by the usual asymptotic
relation (Tassoul 1980; Gough 1986) obeyed by the remainder of the
sample (Mosser et al. 2011, 2012b), their widths are considerably
larger (Garcı́a et al. 2014), suggesting that the � = 1 modes of these
stars are subject to an additional source of damping. Follow-up
analyses by Stello et al. (2016) established that a dichotomy also
exists for the � = 2 modes, but to a lesser extent than � = 1. Radial
(� = 0) modes appear to be unaffected. As argued by Garcı́a et al.
(2014), sources of damping, such as turbulent viscosity, localized
to the convective envelope should affect all low-degree modes to
a similar extent, and so to selectively affect non-radial modes, the
extra source of damping needs to be localized to the core. A further
piece of evidence is that the behaviour is mass-dependent (Mosser
et al. 2012a), being restricted to stars more massive than 1.1 M�
(Stello et al. 2016). This is roughly the threshold mass above which
stars on the main sequence possess convective rather than radiative
cores.

Convective regions of stars are strongly associated with dynamo
action and therefore the existence of a magnetic field (Proctor &
Gilbert 1994; Charbonneau & MacGregor 2001). Numerical simu-
lations suggest that convective core dynamos in massive stars may
generate field strengths of 10–100 kG or more (Brun, Browning
& Toomre 2005; Featherstone et al. 2009). The long time-scales
of magnetic diffusion in stellar cores, which greatly exceed nu-
clear time-scales, suggest that after the dynamo ceases at the end
of the star’s main-sequence life, the field should relax into a long-
lived equilibrium state if sufficiently large-scale magnetic structure
can be retained during the cessation phase. Although there have
been many previous works investigating the effects of magnetic
fields on stellar oscillations (e.g. Campbell & Papaloizou 1986;
Cunha & Gough 2000; Rincon & Rieutord 2003; Reese, Rincon &
Rieutord 2004; Lee 2007), these are not directly applicable here as
they have mainly been concerned with cases where the magnetic
field of interest extends beyond the star and is dynamically signif-
icant only in a thin layer near the surface. Prior to the discovery

of the dipole dichotomy problem, the existence of core-confined
fields, though not generally disputed, was not considered to give
rise to observable consequences. Until recently, very little attention
has been paid to their possible influence on stellar oscillations.

The link to main-sequence dynamo action led to suggestions
that the mechanism behind the dipole dichotomy might involve a
deeply buried magnetic field (Garcı́a et al. 2014). Follow-up the-
oretical work by Fuller et al. (2015) and Lecoanet et al. (2017)
has established that if the magnetic field strength exceeds a critical
threshold, complete conversion of gravity waves to magnetoacoustic
waves occurs, which then dissipate within the core (damping pro-
cesses associated with conversion between different wave modes
have been previously been investigated mainly in the context of
the solar atmosphere; e.g. Spruit & Bogdan 1992). This acts to se-
lectively damp non-radial modes, while also implying that modes
having the character of g modes could not be constructed (only
pure p modes could exist). An additional prediction is that affected
p modes should be magnetically split to an extent comparable to
g-mode period spacings and rotational splittings (Cantiello, Fuller
& Bildsten 2016). However, more detailed analyses of the obser-
vational data performed by Mosser et al. (2017) indicate that (i)
additional splitting of this sort is not seen, (ii) the measured mode
amplitudes are inconsistent with total energy conversion, and (iii)
in many instances, the mixed character of the modes is retained.
The current consensus is that an independent mechanism is re-
quired to explain the existence of stars possessing mixed modes
with weak amplitudes, and where the amplitude depression is only
partial.

In this work, we present a new mechanism for damping spheroidal
modes involving resonant interactions with torsional Alfvén modes
localized to the magnetized core (a similar idea was briefly spec-
ulated on by Reese et al. 2004 in the context of roAp stars, but
this has not been pursued further in any context). No critical field
strength is necessary: Our mechanism is capable of operating in
the regime below the threshold required by Fuller et al. (2015).
Moreover, no disruption to the structure of the spheroidal modes
is required, implying that the mixed character of modes can be re-
tained. Damping rates are a function of several parameters including
the field strength, so in general, one expects only partial energy loss.
In Section 2, we describe the background stellar model and mag-
netic field configuration used. In Section 3, we explain the details
of the damping mechanism and present quantitative results for the
application of this to a 2 M� red giant model in Section 4. We
discuss observational consequences and limitations in Section 5.
We conclude in Section 6.

2 MO D E L S

2.1 Red giant stellar model

We will illustrate our mechanism in the context of a 2 M� red gi-
ant model whose background profiles were generated by the CESAM

(Code d’Evolution Stellaire Adaptatif et Modulaire) stellar evolu-
tionary code (Morel 1997). We obtained the parameter grids from
an online source.1 The various background quantities are plotted in
Fig. 1. The age of the model is 963 Myr, when the star is at an inter-
mediate position in its ascent along the red giant branch (RGB). At

1 https://www.astro.up.pt/helas/stars/cesam/A/data/ (Marques, Monteiro &
Fernandes 2008)
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Figure 1. From left to right, top to bottom panels: plots of the enclosed mass, temperature, pressure, density, adiabatic index, buoyancy frequency, sound
speed and Lamb frequency profiles, for a 2 M� red giant stellar model (generated by CESAM). Note that the temperature, pressure, density and buoyancy/Lamb
frequency plots are only shown up to 5 per cent of the stellar radius. In the plot of enclosed mass (top left-hand panel), an inset plot zooming in to 1 per cent
of the stellar radius has been included to illustrate the high central mass concentration.

this stage, the radius of the star is 7.7 R� and the dynamical time-
scale (given by

√
R3∗/GM∗, where R∗ and M∗ are the stellar radius

and mass) is 6.8 h. Although our proposed mechanism is quite gen-
eral, we have chosen to demonstrate it using a reasonably realistic
stellar model to obtain meaningful estimates of the damping rates
for comparison with observation.

2.2 Magnetic field configuration

Following cessation of convective fluid motions and therefore the
dynamo at the end of the main sequence, the magnetic field is
expected to relax rapidly into an equilibrium state (note that the
Lorentz force during dynamo operation is strong enough to influ-
ence the velocity field; Braithwaite & Spruit 2015). The time-scale
of relaxation is the Alfvén travel time across the core, which can be
as short as 1 yr (for a core diameter of Rc ∼ 100 Mm, B ∼ 10 kG and
ρ ∼100 g cm−3). Where they exist in nature, fields in non-convective
regions should therefore obey the force-balance condition:

∇p + ρ∇	 = 1

μ0
(∇ × B) × B , (2)

where p, ρ, 	 and B are the pressure, density, gravitational potential
and magnetic field, respectively. If that were not the case, then they
would evolve towards such a state on the Alfvén time-scale.

To model a physically realistic equilibrium field that might be
found in a red giant core, one seeks a solution to equation (2) that
(i) is spatially confined, (ii) is finite throughout, (iii) is continuous
at the boundary interior to which the field is confined, and (iv) is

stable. The third condition is needed to avoid infinite current sheets
on the boundary. It has been shown that purely poloidal and purely
toroidal fields are unstable (Markey & Tayler 1973; Tayler 1973;
Flowers & Ruderman 1977), and so, for stability, magnetic equilib-
ria necessarily involve a mixture of poloidal and toroidal compo-
nents. Numerical studies, which find that random initial fields tend
to settle into mixed poloidal–toroidal configurations with roughly
comparable strengths of the two components, support this notion
(Braithwaite & Spruit 2004; Braithwaite & Nordlund 2006). No-
tably, this means that a simple dipole field is inadequate for our
purposes since it violates all four criteria. More generally, it can be
shown that magnetic fields that are force-free throughout, spatially
confined and continuous on the boundary must vanish identically
(Roberts 1967; Braithwaite & Spruit 2015), and so we require a
non-force-free configuration.

Early analytic work by Prendergast (1956) successfully obtained
an axisymmetric, mixed poloidal–toroidal solution satisfying the
first three criteria. Though originally derived for incompressible
stars, its extension to compressibility produces a qualitatively sim-
ilar result (Braithwaite & Nordlund 2006; Duez & Mathis 2010).
Although we do not check for stability of this configuration for
the red giant model considered here, its stability for n = 3 poly-
tropes has previously been verified numerically (Duez, Braithwaite
& Mathis 2010). In addition, we expect that confined fields with
poloidal and toroidal components of comparable strength should,
in general, be adequately characterized by the configuration we em-
ploy. To obtain this field solution, one begins by introducing the
poloidal flux function ψ(r, θ ), in terms of which an axisymmetric
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magnetic field B = (BR, Bφ, Bz) may be written as

B = 1

R
∇ψ × φ̂ + Bφ φ̂ . (3)

Note that (R, φ, z) will be used to refer to cylindrical polar co-
ordinates, while (r, θ , φ) are spherical polar coordinates (the φ

coordinate is the same for each and refers to the azimuthal direc-
tion). Physically, ψ is a flux surface label, meaning that poloidal
projections of the field lines are the level surfaces of ψ . Substituting
equation (3) into equation (2), and applying the appropriate vector
identities, one can show that the quantity F ≡ RBφ is invariant on
flux surfaces, i.e. F = F(ψ). If, in addition, we assume a barotropic
configuration, we arrive at a non-linear partial differential equation,
known as the Grad–Shafranov equation:

�∗ψ + F
dF

dψ
= −μ0ρR2 G , (4)

where

�∗ ≡ ∂2

∂R2
+ ∂2

∂z2
− 1

R

∂

∂R

≡ ∂2

∂r2
+ (1 − μ2)

∂2

∂μ2
, (5)

μ ≡ cos θ , and G = G(ψ) is another flux surface invariant. Neither
the functional forms of F or G are constrained within ideal magne-
tohydrodynamics (different choices correspond to different equilib-
ria), and so following Prendergast (1956), a simplifying choice is to
set F(ψ) = λψ and G(ψ) = −β/μ0, where λ and β are constants.
Separating ψ(r, θ ) = �(r) sin 2θ turns equation (4) into

� ′′ −
(

2

r2
− λ2

)
� = βρr2 , (6)

which is an inhomogeneous, second-order ODE that can be solved
using the method of Green’s functions. Applying the boundary
conditions �(0) = 0, �(r1) = 0 and � ′(r1) = 0, where r1 is the
boundary of the field region, this produces the result:

�(r) = βλr

j1(λr1)

[
f (r, r1; λ)

∫ r

0
ρ(ξ )ξ 3j1(λξ ) dξ

+ j1(λr)
∫ r1

r

ρ(ξ )ξ 3f (ξ, r1; λ) dξ

]
, (7)

where

f (ξ1, ξ2; λ) ≡ j1(λξ2)y1(λξ1) − j1(λξ1)y1(λξ2) , (8)

j1 and y1 are spherical Bessel functions of the first and second kind,
and λ is a root of∫ r1

0
ρ(ξ )ξ 3j1(λξ ) dξ = 0 . (9)

The oscillatory nature of j1 means that more than one possible value
of λ may satisfy equation (9); we chose to use the smallest one. We
have set r1 = 0.005R∗ (the inferred boundary of what used to be the
convective core) on the basis of inspection of the stellar profiles. This
corresponds to a mass coordinate of 0.11M∗. For the ρ(r) profile
of the red giant, we obtain λ = 2643.2R−1

∗ , yielding comparable
poloidal and toroidal field strengths (the maximum values of each
of these differ by less than a per cent).

The components of B in terms of � are given in spherical polar
coordinates by

Br (r, θ ) = 2

r2
�(r) cos θ ,

Bθ (r, θ ) = −1

r
� ′(r) sin θ ,

Bφ(r, θ ) = −λ

r
�(r) sin θ . (10)

The corresponding field configuration, which we will refer to as
Prendergast’s solution, is displayed in Fig. 2.

Prendergast’s solution qualitatively resembles a dipole in its an-
gular dependence, but unlike a dipole field possesses no singularity,
has a mixed poloidal–toroidal topology and vanishes smoothly at
the spherical boundary r = r1 in all three components of B. Beyond
this radius, we set B = 0, i.e. we neglect the envelope field under
the assumption that this is much weaker than the core field. The
overall strength of the Prendergast field is controlled through the
parameter β, which sets the amplitude of the field but not its shape.
Inspection of the CESAM grid of models for this star shows that the
core contracts by roughly a factor of 10 in radius from 403 Myr (on
the main sequence) to 963 Myr. Under conservation of magnetic
flux, central field strengths should increase by a factor of about
100. If magnetic field strengths on the main sequence were 10–
100 kG, then one expects field strengths in the red giant core to be
of the order of several MG. We have set β such that the central field
strength is 4 MG.

3 A LFVÉ N R E S O NA N C E DA M P I N G
MECHANI SM

In this section, we present a mechanism for damping spheroidal
modes through interaction with an embedded magnetic field, illus-
trating this for a red giant containing a Prendergast field in the core.
This section is structured as follows. First, we isolate eigenmodes
of oscillation that in the limit of a weak magnetic field are purely
torsional in nature (e.g. Mestel 2012) and correspond to standing
Alfvén waves localized to the field region (Section 3.1). We show
that these couple to the spheroidal modes through the Lorentz force
(Section 3.2). We then incorporate viscous and Ohmic dissipation
and show that this produces a damping of the torsional modes,
implying that the torsional problem is one of a driven-damped me-
chanical oscillator (Section 3.3). Under resonant conditions, the
rates of driving and dissipation for such a system exactly balance.
In the context of the stellar problem, this means that where reso-
nances between spheroidal and torsional modes exist, the energy
dissipated equals the work done against the Lorentz force by the
spheroidal motions. Integrating this over the star, we arrive at an
analytical expression for the overall damping rate γ of a spheroidal
mode (Section 3.4). Throughout this work, we assume linearity of
the fluid motions and specialize to the case of axisymmetric modes.

3.1 Torsional Alfvénic oscillations

The equation of motion of a driven oscillator can be written as

∂2ξ

∂t2
+ L[ξ ] = S(r, t) , (11)

where ξ denotes mechanical displacement, L is a linear operator
containing the spatial derivatives of ξ and the source term S rep-
resents the external driving/forcing. Here S is regarded as being

MNRAS 467, 3212–3225 (2017)
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Figure 2. The Prendergast magnetic field solution (top panel) calculated
over the assumed core region (0.005 of the stellar radius). This region
is shown shaded in the bottom two panels, which plot the dimensionless
squared buoyancy frequency and mass density profiles near the centre of the
star. In the top panel, a selection of magnetic flux surfaces (poloidal field
loops) are shown as black lines, while the underlying colour represents the
strength of the toroidal component. The absolute scaling of the field at this
stage is arbitrary; illustrated here is just the overall geometry. Note that the
solution is axisymmetric and so only a meridional half-plane needs to be
shown.

external because it does not depend on ξ , although it may be a func-
tion of position r and time t. The normal modes of the oscillator
are the solutions of equation (11) with S = 0 (the homogeneous
problem). Imposing a time-harmonic dependence ξ ∝ exp(− iωt),
this corresponds to the eigenproblem L[ξ ] = ω2ξ , satisfied for only
special values of ω2 = ω2

0. These are the natural frequencies of the
oscillator, and the associated forms of ξ are the eigenfunctions of
the system.

The fluid equation of motion in the absence of rotation can be
written as

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p − ρ∇	 − 1

2
∇B2 + (B · ∇)B , (12)

where u = Dξ/Dt is the fluid velocity and we have absorbed the
usual μ0 factors into the definition of B. The last two terms on
the right-hand side of equation (12) correspond to the magnetic
pressure and tension, respectively. We here adopt the Cowling ap-
proximation under which the gravitational potential is fixed and de-
pends only on r. Then, upon linearizing and taking the curl of equa-
tion (12), the r-components of the first three terms on the right-hand
side vanish, leaving magnetic tension as the only force capable of
restoring torsional motions. In the axisymmetric case, which we
focus on here, the torsional direction corresponds to the φ (az-
imuthal) direction (we comment on the non-axisymmetric case
in Section 5.2). Consider now the torsional component of equa-
tion (12), which linearizes to give

ρ0
∂2ξφ

∂t2
= B0

R
· ∇(RB ′

φ) + B′

R
· ∇(RB0φ) . (13)

Subscript 0s denote static background quantities, while primes de-
note (small) time-dependent perturbations about the background.
Using the linearized induction equation B′ = ∇ × (ξ × B0), this
allows us to express equation (13) in terms of just ξ and back-
ground quantities. This can be written in the form

∂2ξφ

∂t2
+ LT [ξφ] = fTS

ρ0
, (14)

where

LT[ξφ] = − B0

ρ0R
· ∇

[
R2 B0 · ∇

(
ξφ

R

)]
, (15)

fTS = − B0

R
· ∇

[
R2ξ ·

(
B0φ

R

)
+ RB0φ(∇ · ξ )

]

+ 1

R
[∇ × (ξ × B0)] · ∇(RB0φ). (16)

See that fTS depends only on the spheroidal displacement ξS ≡
(ξR, 0, ξz), not ξφ , and can thus be regarded as a forcing term in
equation (14) provided that the spheroidal displacement is assumed
to be known, which will effectively be the case when the magnetic
field is weak. In that case, the spheroidal modes will be relatively
unperturbed.

Let us examine the operator LT more closely. Although, at the
first glance, this appears to depend on three spatial dimensions, note
that B0 · ∇ = Bp∂/∂s, where Bp is the magnitude of the poloidal
component of B, and s is arc length (i.e. physical distance) along
the poloidal projections of the field lines. Hence, the problem is
intrinsically 1D. Rescaling to a new distance coordinate σ obeying
dσ/ ds = 1/(R2Bp), the eigenproblem reduces to

∂2ηφ

∂t2
= v2

A

∂2ηφ

∂σ 2
, (17)
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where ηφ ≡ ξφ/R is a new scaled fluid displacement and v2
A ≡

1/(ρ0R
4). One recognizes equation (17) as the 1D wave equation

with spatially varying advection speed vA = vA(σ ), which can be
identified as the Alfvén speed with respect to the new coordinates.
From here, it becomes more convenient to work in terms of ηφ rather
than ξφ . The particular form of equation (17) allows the solutions to
be understood intuitively as standing waves on stretched 1D loops.
These are quantized vibrations whose frequencies increase as the
spatial scale decreases.

We solved equation (17) as a matrix eigenvalue problem on
a discrete 1D grid for each flux surface, with periodic boundary
conditions and spatial derivatives approximated by centred differ-
ences. We calculated the eigenmodes Xj(σ , ψ) and eigenfrequen-
cies ω2

0,j (ψ) on 1000 evenly spaced (in ψ) flux surfaces with 5000
uniformly spaced (in σ ) points on each surface. Here j ∈ Z

+ is
the harmonic index. Although the total number of eigenfunctions
obtainable by this method equals the number of grid points, the ac-
curacy of the solutions is expected to degrade for larger ω2

0,j values
where spatial scales of the associated eigenfunctions become too
small to be adequately resolved. On each flux surface, we restricted
the eigenfunctions used in further analysis to the 1000 having the
lowest eigenfrequencies.

The parameter β was chosen so as to produce the distribution of
the Alfvén speed, vA, shown in the upper panel of Fig. 3. A selected
eigenmode is illustrated in the lower panel of Fig. 3. Since the
problem is axisymmetric, the spatial amplitude function need only
be displayed on a poloidal field loop, corresponding to a longitudinal
slice of the flux surface. The full solution is obtained by sweeping
each loop in a circle about the axis of symmetry (here the z-axis).
The motion can be envisaged as segments of each flux surface
(which are tori in 3D) twisting with respect to others. For a given
wave speed vA, one expects ω0, j for a fixed j to increase as the length
of the field loop shrinks. This is indeed observed in our model: the
spatial distribution of ω0, j for j = 300 is shown in Fig. 4.

For a given flux surface, one also expects ω0, j to increase with j.
Only an even number of nodes is allowed for vibrations on a loop,
so j = 1 has zero nodes, j = 2, 3 have two, j = 4, 5 have four, and so
on. Hence, j is roughly proportional to the number of wavelengths
around the loop, but there is a paired structure to the spectrum. This
can be seen in the inset to Fig. 5, which plots ω0, j versus j for a
selection of flux surfaces. Note that despite having equal numbers
of nodes, each pair still corresponds to distinct eigenmodes, these
being odd and even versions of one another (e.g. for a constant vA,
they would be the sine and cosine solutions), with slightly differ-
ent eigenfrequencies. Note that similar behaviour of the periodic
solutions of the Mathieu equation occurs. The overall slope of ω0, j

versus j should also be proportional to the fundamental frequency
(larger for smaller loops, in line with the picture of a vibrating
string). As can be seen in Fig. 5, this is indeed the case.

3.2 Coupling with spheroidal motions

The perturbation to the Lorentz force can be subdivided into terms
that depend on the spheroidal displacement ξS but not the torsional
displacement ξφ , and the terms that depend on ξφ but not ξS (this is
possible because only terms linear in ξ are retained). Writing this
out in components, we can express this separation as

f S(ξ ) = f SS(ξS) + f ST(ξφ) ,

fT(ξ ) = fTS(ξS) + fTT(ξφ) , (18)

Figure 3. Spatial distribution of the Alfvén speed overlaid with an arbitrary
field loop (top panel) and the amplitude function for the j = 7 eigenmode
on that loop (bottom panel). Colour bar units are in terms of the dynamical
speed

√
GM∗/R∗. In the bottom panel, the equilibrium position of the field

line is shown in black and the displaced position in red. Arrows are an aid
to visualizing the direction of the displacement.

where f S and fT and the spheroidal and torsional components to
the Lorentz force perturbation, f SS are the terms in f S that depend
only on ξS, f ST are those that depend only on ξφ , etc. This allows
us to observe the following coupled structure of the equations of
motion:

∂2ξS

∂t2
+ LS[ξS] = f ST(ξφ)

ρ0
(19)

∂2ξφ

∂t2
+ LT[ξφ] = fTS(ξS)

ρ0
, (20)

where

LS[ξS] = 1

ρ0

[∇p′ + ρ ′∇	0 − f SS(ξS)
]

, (21)

LT[ξφ] = −fTT(ξφ)

ρ0
. (22)

We see that the coupling between spheroidal and torsional mo-
tions is provided by the Lorentz force. To first order, given that
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Figure 4. Spatial distribution of the j = 300 eigenfrequencies. Colour bar
units are in terms of the dynamical frequency

√
GM∗/R3∗ . Since eigenmodes

are localized to individual flux surfaces, ω0, j is constant on any flux surface
for a given j. Smaller flux surfaces tend to have a higher ω0, j for a fixed j.

Figure 5. The torsional spectrum calculated for 10 evenly spaced (in ψ)
flux surfaces. Each track corresponds to one flux surface, and flux surfaces of
lower tracks enclose those of higher ones. Although apparently continuous,
the tracks are, in fact, made up of discrete points since j ∈ Z

+. The dis-
creteness can be seen in the inset plot, which zooms in to a small portion of
the overall spectrum. The paired structure reflects approximately degenerate
modes, which have equal numbers of nodes but are odd and even versions
of one another. Frequencies are given in units of the dynamical frequency,√

GM∗/R3∗ .

the Lorentz force is much smaller than the forces of pressure
and buoyancy, the f SS term in equation (21) can be neglected.
This is akin to assuming that the magnetic field has negligible
effect on the spheroidal eigensolution (i.e. we still get the usual

p and g modes). An important term not included explicitly in equa-
tion (19) is the forcing associated with (purely spheroidal) convec-
tive motions, which is the source of energy for the whole system.
Given that the coupling from spheroidal motions into torsional mo-
tions and back into spheroidal motions is a second-order process,
the direct contribution of convection should dominate over f ST in
the spheroidal equation of motion when magnetic fields are weak
(the coupling strength scales like the magnetic pressure B2, which is
far smaller than the gas pressure). We shall thus neglect all magnetic
terms in equation (19). In contrast, the Lorentz force has a first-order
significance in providing both the driving and the restoration of tor-
sional motions, since there are no pressure or buoyancy forces to
compete with, and cannot be neglected in equation (20).

With magnetic terms neglected, finding the spheroidal eigen-
modes reduces to the standard hydrodynamic problem of linear
adiabatic stellar oscillations. In the Cowling approximation (i.e. ne-
glecting the perturbation to the gravitational potential), this involves
solving the following second-order system of ordinary differential
equations (ODEs):

dξr

dr
= −

(
2

r
− 1

�1Hp

)
ξr + 1

ρ0c2
s

(
S2

�

ω2
− 1

)
p′

dp′

dr
= ρ0(ω2 − N2)ξr − 1

�1Hp
p′ , (23)

which can be achieved by standard numerical techniques for
ODE eigenvalue problems. We did this by first interpolating the
CESAM profiles on to a finer grid (to capture the small spatial scales
of g-mode oscillations) and then solving equations (23) using the
shooting method. The quantities �1, Hp, cs, S� and N character-
ize the stellar background and correspond to the adiabatic index,
pressure scaleheight, sound speed, Lamb frequency and buoyancy
frequency, respectively. The horizontal component ξ h of the fluid
displacement is related to p′ through

ξh = p′

rω2ρ0
. (24)

We conducted a near-exhaustive search for all spheroidal eigen-
modes between ω = 1 and 20 (expressed as a multiple of the
dynamical frequency,

√
GM∗/R3∗), refining this near the locations

of p-dominated modes (of which, one exists per radial order), for
spherical harmonic degrees � = 0, 1, 2 and 3. The objective was
to selectively extract the modes that are observable experimentally,
which are restricted to those with low � (due to geometric cancel-
lation effects), strong p-mode character (associated with larger sur-
face motions and therefore intensity variations) and located within
several radial orders of ω = 10 (typical frequency of maximum ex-
citation for solar-like oscillators). Fig. 6 shows several � = 0 modes
and one � = 1 mode found by the search. The � = 0 modes (top left-
hand panel) are oscillatory only near the surface, while the � = 1
mode (top right-hand and bottom right-hand panels) has significant
mixed character and is oscillatory both near the surface and near the
centre. Mixing occurs also for � = 2 and 3, but due to the weaker
coupling for higher �, the modes have purer p- or g-like character
compared to � = 1. Radial orders n (bottom left-hand panel) were
computed using the Eckart scheme (Eckart 1960; Scuflaire 1974;
Osaki 1975), where the convention is to count p-type (g-type) radial
crossings positively (negatively). The large negative values for the
� > 0 modes indicate that these have a large number (hundreds) of
oscillations in the g-mode cavity.

Recall that from the point of view of the torsional equation of
motion, spheroidal fluid motions act as a forcing function through
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Figure 6. A selection of eigenmodes and eigenfrequencies for the stellar
model examined here, showing the four lowest-order radial modes (top
left-hand panel), and an � = 1 mixed mode near ω = 10 (top right-hand
panel) with the central regions shown enlarged on the bottom right-hand
panel so that the g-type oscillations can be seen. Red and black in the two
righthand plots correspond to horizontal and radial fluid displacements ξh

and ξr , respectively. Note that the scaling of ξ is arbitrary. The frequencies
(expressed as a multiple of the dynamical frequency) of the first four lowest
spherical degrees are plotted versus radial order on the bottom left-hand
panel.

their associated Lorentz force. In general, if the forcing applied to a
mechanical oscillator contains one or more frequencies that match
its natural frequencies, then resonant excitation occurs. The strength
of the excitation depends on the geometric similarity between the
forcing function at the resonant frequencies and the correspond-
ing eigenmodes, which can be quantified as the coefficients of the
eigenfunction expansion of the forcing function. Fig. 7 shows the
spatial distribution of fTS near the core for the mode shown on the
right of Fig. 6. Overlaid in black is the same field loop shown in
Fig. 3. The fine-scale oscillations of ξS produce corresponding fine-
scale oscillations of fTS(ξS). This illustrates how the excitation of
high harmonics by low-degree modes can occur: In general, the
field lines cut across many radial shells, enabling large n to map to
large j.

The torsional equation of motion in terms of the scaled fluid
displacement ηφ can be written as

∂2ηφ

∂t2
− 1

ρ0R4

∂2ηφ

∂σ 2
= Fφ , (25)

where Fφ = fTS/ρ0R. We now wish to derive an expression for the
expansion coefficients of Fφ (the spheroidal forcing) with respect
to the torsional eigenmodes Xj identified in Section 3.1, i.e. the
quantities aj in

Fφ(σ, ψ) =
∑

j

aj (ψ)Xj (σ, ψ) . (26)

First, we need to establish the orthogonality relation for Xj. Sub-
stituting the eigensolution ω2

0,j , Xj into the homogeneous form of

Figure 7. Spatial distribution of fTS (the torsional component of the Lorentz
force associated with spheroidal motions) for the mixed mode shown on the
right of Fig. 6, overlaid with the flux surface shown in Fig. 3. Only the region
near the centre is shown. Fluid displacements have been normalized so that
the total energy of the mode is unity. One sees that there is a cross-cut of the
field loop across many radial nodes (sign changes) of fTS, suggesting that
this should preferentially excite high-index harmonics on that loop.

equation (25), we have

− ρ0R
4ω2

0,jXj = ∂2Xj

∂σ 2
. (27)

Integrating twice by parts and applying periodic boundary condi-
tions, one can show that∮

X∗
k

∂2Xj

∂σ 2
dσ =

∮
Xj

∂2X∗
k

∂σ 2
dσ , (28)

where the integral is around a closed field loop. Multiplying equa-
tion (27) by X∗

k and integrating, and using equation (28), we find
that(
ω2

0,j − ω2
0,k

) ∮
ρ0R

4XjX
∗
k dσ = 0 , (29)

which implies that unless ω2
0,j = ω2

0,k , it must be that∮
ρ0R

4XjX
∗
k dσ = 0. It is possible to normalize the Xj so that∮

ρ0R
4XjX

∗
j dσ = 1. Doing so, we arrive at the desired expres-

sion:

aj =
∮

R3fTSX
∗
j dσ . (30)

The values of aj for the spheroidal mode shown in Fig. 7 and
each of the torsional modes are plotted in Fig. 8. The spheroidal
displacements have been normalized such that the total energy E
(Unno et al. 1989) equals unity, i.e.

E = ω2
∫

ρ0r
2
[
ξ 2
r (r) + �(� + 1)ξ 2

h (r)
]

dr = 1 . (31)

As a comment, the values obtained for aj for the current model are
substantially lower than the maximum physically allowed values,
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Figure 8. The torsional spectrum computed for 500 flux surfaces. Points
are coloured according to the strength of coupling with the spheroidal mode
whose Lorentz force distribution is shown in Fig. 7. The coupling strength
is quantified as |aj|, the absolute value of the coefficient of the eigenfunction
expansion (see equation 30).

which would occur under conditions of complete geometric overlap
(perfect constructive interference). As an order-of-magnitude esti-
mate, the upper bound on aj is given by R1/2

c B3/2ξL−2, where Rc is
the size of the core, ξ is the characteristic fluid displacement and L
is the characteristic length-scale of variations in ξ . For our red giant
model, substituting appropriate values for these parameters yields a
physical upper bound on aj of the order of 104. As can be seen from
Fig. 8, the actual values obtained are aj ∼ 100.

Also apparent from Fig. 8 is that the torsional spectrum is very
dense. In fact, for every value of j ∈ Z

+, there is a continuum of
ω0, j values, reflecting the existence of a continuum of flux surfaces.
However, the number of resonances is finite due to the discrete
nature of j, and at a given ω equals the j range intersected by a
horizontal line at that value of ω. For the spheroidal mode shown in
Fig. 7, which is near ω = 10, we identify around 900 resonances,
i.e. there exist this number of magnetic flux surfaces that have a
torsional mode with this eigenfrequency.

3.3 Dissipative effects

We shall now incorporate dissipative effects, with the goal of elu-
cidating their role in contributing to the damping of the torsional
oscillations. In the following derivation, it will be assumed that
the damping coefficients in units of the dynamical frequency are
much less than unity (highly underdamped oscillator), so that the
eigenfrequencies and eigenmodes derived above remain valid. At
the end of this section, we evaluate the expression for the damping
coefficient obtained and verify that it is indeed small.

With dissipative terms included, the momentum and induction
equations are

∂2ξ

∂t2
+ L[ξ ] − ν∇2 ∂ξ

∂t
= 0 (32)

∂B′

∂t
− νm∇2 B′ = ∇ ×

(
∂ξ

∂t
× B0

)
, (33)

where ν and νm are the viscous and Ohmic dissipation coefficients,
and L[ξ ] refers to the linearized form of the right-hand side of
equation (12). Anticipating small scales, we have retained only the
highest order derivatives in the viscous force and rate of Ohmic

diffusion. Invoking a time-harmonic separation, equation (33) be-
comes an inhomogeneous Helmholtz equation that can be solved
by means of an integration kernel to yield B′(r) ≈ ∇ × (ξ̄ × B0),
where

ξ̄ (r) =
∫ ∫ ∫

K(r − r ′)ξ (r ′) d3r ′ , (34)

K(r) = iω

4πνm|r| exp

[
−(1 − i)

√
ω

2νm

|r|
]

. (35)

Here we have assumed that ξ varies much more rapidly over space
than B0, which itself varies on a scale much larger than

√
νm/ω. As

far as the Lorentz force is concerned, the effect of dissipation is thus
to replace ξ by ξ̄ , which are related through ξ = ξ̄ − (νm/ iω)∇2ξ̄ .
Substituting this into equation (32), neglecting products of ν and
νm (given that both are small), defining η̄φ ≡ ξ̄φ/R and retaining
only diffusive terms involving second-order spatial derivatives, the
torsional component can be written as

∂2η̄φ

∂t2
− 1

ρ0R4

∂2η̄φ

∂σ 2
− νtot

∂2

∂n2

∂η̄φ

∂t
= Fφ , (36)

where ν tot = ν + νm is the total dissipation coefficient and n is the di-
rection normal to the flux surfaces. The reason for retaining only this
spatial part of the Laplacian is that the finest scale structure is likely
to develop in the direction perpendicular rather than parallel to the
flux surfaces, as a result of phase mixing. This refers to the decorre-
lation of oscillations on adjacent surfaces having slightly different
eigenfrequencies, which occurs on a time-scale corresponding to the
inverse of their frequency difference (cf. the beat phenomenon). In
the case of our model, the decorrelation time-scale associated with
the spatial scale along flux surfaces (∼10−5R∗) is only ∼10 dynam-
ical times, much shorter than the dissipation time-scale associated
with the same length-scale (∼106 dynamical times). Decorrelation
will therefore proceed down to much smaller scales before its de-
velopment is halted by viscous/resistive effects.

We seek a solution to the coefficients bj of the eigenfunc-
tion expansion η̄φ(t, σ, ψ) = ∑

j bj (ψ)Xj (σ, ψ) e− iωt . Noting that
∂/∂n = RBp∂/∂ψ , we obtain

[
ω2

0,j − ω2
]
bj (ψ) + iνtotωR2B2

p

∂2bj (ψ)

∂ψ2
= aj (ψ) . (37)

Let us focus on a small region in ψ near a resonant surface ψ0

whose jth harmonic is of frequency ω0, j(ψ0) = ω. Locally, we
adopt the Taylor expansion ω2

0,j (ψ) ≈ ω2 + 2ωω′
0,j (ψ0)[ψ − ψ0].

Consider the change of variable x = C[ψ − ψ0], where C =
(2ω′

0,j (ψ0)/R2B2
p)1/3, which turns equation (37) into

bjx + iνtot
∂2bj

∂x2
= Caj (ψ0)

2ωω′
0,j (ψ0)

. (38)

The right-hand side, which we will call A, can be regarded as roughly
constant over the resonant layer. Equation (38) can be solved using
Fourier transforms (x → k and bj (x) → b̃j (k)), yielding

b̃j (k) =
{

0 k > 0

iA exp[k3νtot/3] k < 0
. (39)

In the limit ν tot → 0, b̃j / iA tends to 1 − H(k), where H(k) is the
Heaviside step function. This satisfies iF [1 − H (k)] = 1/(x − i0).
Here F denotes a Fourier transform and i0 is an infinitesimal imag-
inary component that we identify with the damping contribution
i�ω (cf. the Landau prescription from plasma physics). The final
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solution for bj is then

bj (ψ) = aj (ψ0)

ω2
0,j (ψ) − ω2 − i�ω

. (40)

Since the right-hand side of equation (38) is approximately con-
stant, we infer the characteristic scale to be x ∼ ν

1/3
tot . The local

damping rate can be estimated from the first-order term of the
Taylor expansion of ω2

0,j (ψ), and has the approximate expression

� ∼ [2ω′
0,j (ψ0)RBp]2/3ν

1/3
tot . Up to a factor of order unity, � turns

out to be the inverse of the time-scale required for decorrelation
to occur over the width of the resonant layer. Further inspection
reveals that this width is precisely that for which the time-scales
of decorrelation and dissipation are equal, providing the physical
interpretation for the associated loss process as being closely linked
to phase mixing. Given the small magnetic Prandtl numbers in stel-
lar interiors, ν tot is dominated by the Ohmic dissipation coefficient
νm ≈ 109T−3/2 m2 s−1 (Spitzer 1962). For our model (T ∼ 107 K),
we find that � ∼ 10−3 inverse dynamical times, and that the widths
of the resonant layers are ∼10−7R∗.

3.4 Overall damping rates

A major objective of this work is to estimate the overall damping rate
γ of spheroidal modes due to the resonant coupling with torsional
modes. We will now combine results from preceding sections to
arrive at an expression for γ .

The total rate of work done by the torsional component of the
Lorentz force associated with spheroidal motions is

dE

dt
=

∫ ∫ ∫ (
fTS

∂ξ ∗
φ

∂t
+ f ∗

TS

∂ξφ

∂t

)
d3r

= 4πRe

[∫ ∫
ρ0R

4Fφ

∂η∗
φ

∂t
dσ dψ

]
. (41)

Invoking the eigenfunction expansions for Fφ and ηφ , eliminating bj

in favour of aj using equation (40), making use of the orthonormality
relation for Xj and averaging over one oscillation period, we obtain
the time-averaged rate of work:〈

dE

dt

〉
≈ 4π

∑
j

∣∣aj (ψ0)
∣∣2

∫
�

h(ψ) + �2
dψ , (42)

where

h(ψ) ≡
(

ω2
0,j (ψ)

ω
− ω

)2

. (43)

This assumes that aj varies slowly over the width of the resonant
region and can be approximated by its value at the resonant surface
ψ = ψ0, where ω0, j(ψ0) = ω. In the limit of small �, the resonant
region is spatially narrow, and so we can approximate h(ψ) by
the first term of its Taylor expansion about ψ0. This allows us to
straightforwardly evaluate the ψ-integral in equation (42). We arrive
at the final expression:〈

dE

dt

〉
= 2π2

∑
j

∣∣aj (ψ0)
∣∣2

(∣∣∣∣ dω0,j

dψ

∣∣∣∣
ψ0

)−1

, (44)

which we see is independent of the local damping coefficient �.
This reflects a basic property of driven-damped oscillators that near
a resonance, in the limit of weak dissipation (regardless of what
this may be or how it physically arises), the system always adjusts
itself so that the rate of driving and dissipation are in balance. The

global damping rate of a spheroidal mode is then γ = 〈 dE/ dt〉/E,
where E, given in equation (31), is the total energy of the mode. If
we were to normalize the fluid displacements such that E = 1, then
γ is simply given by equation (44).

4 R ESULTS

4.1 Application: damping red giant oscillations

The summation in equation (44) for any given spheroidal mode
having frequency ω is over all torsional modes (indexed by j) whose
frequencies equal this. Our approach to evaluating this was to scan
over the 1000 × 1000 torsional modes computed and saved for the
ones whose ω0, j lay closest to the target frequency. If the difference
fell below a certain threshold (taken to be 0.1 frequency units),
this was classed as a resonance and the contribution of the mode
was added to the sum. The typical ω spacing between the torsional
modes in our set was ∼0.01 frequency units, so variations about the
threshold of 0.1 units affected the results very little. The purpose of
the threshold was to restrict the j range of modes resonant at a given
ω to be as close to the true range as possible, without losing modes
comfortably within the true range. A further point to be made is
that every j value was scanned independently, which restricts the
resulting set of modes to one per j but not one per flux surface. At
the low resolution of the grid (1000 flux surfaces) compared to the
j range of the spectrum (of the order of this value, as can be seen
from Fig. 8), there are instances where a flux surface contributes
more than one mode to the sum. Though not strictly realistic, it
is inevitable with this discretized approach that the true resonant
surface for given j is approximated by one close-by, and this may
be shared between more than one j. Given the slow variation in
the structure of the torsional modes with space, however, this is
unlikely to give rise to systematic errors. Our quantitative results are
impacted more heavily by the fact that only a finite number of modes
were generated, since this excludes some number of potentially
resonant modes (implications are discussed further in Section 5.2).

Fig. 9 plots the damping times tdamp ≡ γ −1 calculated for the
p-dominated modes of the red giant model described in Section 2.
The field strength is scaled such that the central value is 4 MG,
in line with expectations from simulations of main-sequence core
dynamos (Brun et al. 2005) and magnetic flux conservation during
core contraction into the red giant stage. We find that damping times
for the � = 0 modes are typically in excess of 1023 d, many orders
of magnitude longer than for the � > 0 modes, which are damped
on time-scales of months through this mechanism. A distinguish-
ing feature between radial and non-radial modes, which is likely
to explain this, is the structure of the spatial amplitude function
within the core. For radial modes, spatial oscillations occur only
near the surface; near the core, the amplitude function follows a
very smooth exponential decay. This results in very tiny aj values
for the torsional modes (which are localized to the core) having fre-
quencies near ω = 10. In contrast, the spatial amplitude functions
of non-radial modes near ω = 10 have hundreds of finely spaced
oscillations within the core, and so are able to strongly overlap with
torsional modes having j values of several hundred. At the field
strengths expected for red giant cores, it turns out that the eigen-
frequencies associated with torsional modes having j ∼ 100 lie in
the vicinity of ω = 10, making resonances between spheroidal and
torsional modes possible. (For ρ ∼ 105 g cm−3, B ∼ 1 MG and
Rc ∼ 10 Mm, we have vA ∼ 10 m s−1, implying a fundamental
Alfvén frequency of ∼1 μHz. Spheroidal modes in red giants are
excited near ∼100 μHz.)
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Figure 9. Damping times for the most p-dominated modes of the four
lowest degree spherical harmonics. Radial modes are shown on a separate
plot (top panel) since their damping times differ greatly from the non-radial
modes (bottom panel). For non-radial modes, at frequencies below a certain
threshold (here ω ≈ 11), one sees that lower degrees experience stronger
damping. Note the logarithmic scale on the vertical axis. The unit of ωS is
the dynamical frequency, while tdamp is expressed in days.

4.2 Dependence on spherical harmonic degree

For the three non-radial degrees examined, we find systematic dif-
ferences in the characteristic damping times, these differing by
roughly an order of magnitude between adjacent �. At the field
strength considered, damping times below a certain threshold fre-
quency (occurring, for example, near ω = 11 for � = 1; this ‘step’
feature is commented on more below) are 101–102 d for � = 1,
102–103 d for � = 2 and 103–105 d for � = 3. Particularly for � = 1,
these damping times are comparable to those associated with tur-
bulent convection (10–30 d), which suggests that damping through
resonant interactions with Alfvén modes should impact mode am-
plitudes at an observable level. These would be most pronounced
for � = 1, followed by � = 2 and then � = 3.

The physical reason for the dependence of damping rates on �

is likely to be the variation in the strength of coupling between
the p- and g-mode cavities, which determines the extent of mode
mixing. For a fixed frequency, the g-mode cavity is of the same
size regardless of �, but the p-mode cavity is larger for smaller �.
Consequently, mode mixing is most effective for � = 1, followed
by � = 2, then � = 3, and so on for higher multipoles. One measure
of the g-like character of a mode is the mode inertia

M� =
∫

ρ0r
2
[
ξ 2
r (r) + �(� + 1)ξ 2

h (r)
]

dr

ξ 2
r (R∗) + �(� + 1)ξ 2

h (R∗)
, (45)

which gives an indication of the amount of mass displaced by the
mode. Modes with smaller (larger) inertia are more p-like (g-like),
preferentially localized to the envelope (core) where densities are
lower (higher). The plot of M� versus mode frequency (see Fig. 10)
exhibits periodic modulations once per radial order (one unit of ω),
where the modes having minimum M� are the most p-dominated

Figure 10. Mode inertia as a function of frequency for the spheroidal modes
of the red giant model. Black, red, green and blue correspond to � = 0, 1, 2
and 3, respectively. Though the spectrum is discrete, individual points (one
for each mode) have been joined by straight lines to aid visualization of
the pattern. Asterisks mark the most p-dominated modes, identified as local
minima in the red, green and blue curves. These are the ones for which
damping times have been computed and plotted in Fig. 9.

ones. Observations favour the detection of p-dominated modes be-
cause these give rise to larger fluid motions at the surface, and so we
selectively consider these modes here. These are marked with aster-
isks in Fig. 10. One can see that the � = 1 p-dominated modes (red
asterisks) have the largest inertia and thus the most g-like character
compared to other �. The larger core fluid displacements associated
with the p-dominated � = 1 modes enhances their rate of damping
due to interactions with the torsional Alfvén modes, compared with
the p-dominated modes of higher � (green and blue asterisks).

4.3 Scaling with field strength and core size

For a fixed core size Rc, damping rates associated with this mech-
anism are expected to be smaller for weaker magnetic fields. We
have fTS ∝ B2, Xj ∝ B1/2 and

∮
dσ ∝ B−1, so if we were to ig-

nore changes in aj associated with details of the mode geometries,
then from equation (30), we infer that aj ∝ B3/2. In addition, the
number of available resonances at given ω is inversely proportional
to B, and | dω0, j/ dψ | is independent of B, so from equation (44),
this implies that γ ∝ B2. The increase in γ with B, which appears
to be driven through the aj dependence, arises physically from the
increased coupling between spheroidal and torsional motions when
the Lorentz force is stronger. While the above scaling argument is
fairly simplistic, it does appear to be the case numerically that γ

increases with increasing B (doubling the field strength decreases
the characteristic damping times by a factor of several).

Also of interest is the predicted variation of γ with Rc. As a star
ascends the RGB, its core contracts and envelope expands. One
expects the damping rate of modes near the frequency of maximum
excitation νmax (which is itself subject to variation) to change ac-
cordingly. To estimate this, we will assume conservation of mass
and magnetic flux, so that ρ0 ∝ R−3

c and B ∝ R−2
c . In this situation,

fTS ∝ R−5
c ,

∮
dσ ∝ Rc and Xj ∝ R−1

c , so aj ∝ R−2
c . We also need

to account for changes in the torsional eigenfrequencies: these go
as ω0, j ∼ vA/Rc, where vA ∼ B/

√
ρ0 ∝ R−1/2

c , so both ω0, j and
| dω0,j / dψ | ∝ R−3/2

c .
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To predict the dependence of γ on Rc, it remains to determine the
effect of changing the frequency of excitation, which enters into γ

through
∑

j, the summation over resonant modes. As can be seen
from Fig. 8, the torsional eigenspectrum fills a wedge in (ω0, j, j)-
space. The number of resonances at frequency ω equals the range in
j intersected by a horizontal line placed at that frequency. If all ω0, j

are boosted by a given factor, then the wedge is stretched upwards
leaving a proportionally smaller j-intersection range at the location
of a fixed horizontal line. Likewise, if the line representing ω is
shifted downwards by some factor, then the j range intersected de-
creases proportionally. Inspection of the CESAM models for this star
shows that between 963 and 1021 Myr, R∗ roughly quadruples while
Rc halves, suggesting that empirically R∗ ∝ R−2

c . We know that
νmax ∝ R−3/2

∗ , so putting all this together,
∑

j ∝ νmax/ω0,j ∝ R9/2
c .

Together with the |aj |2| dω0,j / dψ |−1 ∝ R−5/2
c dependence of the

contribution from each mode, this leads to γ ∝ R2
c as the predicted

scaling dependence for spheroidal modes near νmax. We thus pre-
dict that damping rates should decrease as the core contracts. The
dominating influence here is the reduction in the number of avail-
able resonances, which falls off more quickly than the strength of
spheroidal–torsional coupling grows (acting alone, the latter would
tend to drive up γ through the increase in B and therefore aj as Rc

shrinks).

5 D ISCUSSION

5.1 Comparison with observations

5.1.1 Impact on mode visibilities

Mode visibilities (i.e. amplitudes) v�, which are a measure of the
area under the peaks in the power spectra associated with a given
�, are usually expressed in a form where they are normalized with
respect to some other quantity. If this is with respect to the area
under � = 0 peaks, then, for example, v1 ≈ 1.54 (Ballot, Barban &
Van’t Veer-Menneret 2011). In the context of the dipole dichotomy
problem, following Mosser et al. (2017), it is more convenient to
normalize with respect to the area under the � = 1 peaks of stars
that fall in the high-amplitude (‘normal’) group. Normal stars thus
have v1 ≈ 1. For a fixed rate of excitation, the visibility of a mode
decreases proportionally with the overall damping rate, and so the
latter definition of v1 allows it to be expressed in terms of the
envelope- and core-associated damping rates γ e and γ as

v1 = γe

γe + γ
= tdamp

te + tdamp
, (46)

where te ≡ γ −1
e . In practice, te can be measured from the linewidths

of the radial modes and is characteristically 15 ± 5 d (see Mosser
et al. 2017, fig. 3b)

As can be seen from fig. 3(a) of Mosser et al. (2017), the low-
amplitude group of red giants have v1 values close to 0.1 for stars
with dynamical frequencies �ν near 12 μHz, and v1 values around
0.7 for stars with �ν near 4 μHz, with some scatter about this
trend. Let us take te to be 15 d. From Fig. 9, it appears that tdamp

lies between 30 and 50 d for � = 1, producing v1 in the range of
0.67–0.77. Increasing the field strength increases the damping and
lowers the visibilities: at triple the field strength, tdamp values would
be roughly nine-fold lower, producing v1 in the range of 0.18–0.27.
The full range of observed visibilities for stars with depressed � = 1
modes can thus be accounted for through modest variations of the
field strength. For �= 2, tdamp values are about an order of magnitude
greater than � = 1, placing v2 (defined in an analogous manner) at

around 0.93–0.97. At triple the field strength, v2 would be in the
range of 0.60–0.88. The damping times computed for � = 3 are
about an order of magnitude larger still, which would give v3 values
of 0.98–0.99 (this would be much more difficult, if not impossible,
to detect compared to � = 1 and 2). Hence, the �-dependence of
the mode amplitude depression observed experimentally (Stello
et al. 2016) is reproduced by our mechanism.

5.1.2 Explaining the dichotomy

Given that γ depends on B, one possible explanation for the di-
chotomy in the red giant population is that this reflects a dichotomy
in the field strengths. This could be related to the stability of mag-
netic equilibria, where the initial dynamo-generated field relaxes
into one of two or more possible states characterized by different
equilibrium strengths (e.g. Braithwaite 2008). The helicity (approx-
imately conserved during relaxation), which, in turn, depends on the
dynamo mechanism, may play a role. However, further investigation
along this line is beyond the scope of this work.

Another possibility is that this relates to a property of the results
not yet discussed in much detail, and that is the dramatic step-like
feature present in the aj distribution. This refers to the broad ‘shoul-
der’ tracing out a roughly horizontal line past about j � 400 near
ω = 11 in Fig. 8. Just below this line, aj values are large, but step
down by about two orders of magnitude above it. This does not
appear to be associated with any particular flux surface; rather, it
seems as though each flux surface has a j value above which aj sud-
denly becomes small, and the associated ω0, j is roughly the same
for all flux surfaces. We note that the position of this step migrates
downward for spheroidal modes of increasing frequency ωS, and so
we suggest that it may be related to the spatial scale L of the g-mode
oscillations, which, given a characteristic vA, are associated with a
certain frequency vA/L. As ωS increases, so does L, which would
qualitatively explain the direction of its migration. One could con-
ceive of this as being related to the condition ωS = vA/L, describing
a match of both the frequency and spatial scale of spheroidal and
torsional modes, which gives rise to optimal coupling. Torsional
modes with smaller spatial scales rapidly become difficult to excite.
The step feature can be clearly seen in Fig. 9 as the strong jump
in tdamp near ω = 11 for � = 1, and ω = 14 for � = 2 (for � = 3,
this lies slightly off the edge of the plot, near ω = 16). Hence, there
is also a dependence on � of the step location, this being at higher
frequencies for larger �.

Regardless of the origin of this feature, if it turns out to be
ubiquitous among different stellar models, then this could explain
the dichotomy as being created by νmax lying above or below
the step. If ωS (the frequency of a given spheroidal mode) lies
below the step, aj and hence γ values will be high. As ωS in-
creases, there will come a point where it meets the frequency of
the step and aj values strongly drop. Modes of higher ωS would
be subject to much weaker damping. The location of the step de-
pends also on the field strength: for stronger fields (larger vA),
this occurs at higher frequencies. Though there may be other fac-
tors involved, this means that an intrinsic spread of field strengths
among the red giant population could produce the dichotomy. It
is worth noting that this picture implies the possibility of stars for
which the step lies near νmax, about which modes of several ra-
dial orders are usually detectable. For such stars, one expects to
see low visibilities at frequencies below the step, and high (‘nor-
mal’) visibilities above. Interestingly, such stars have indeed been
reported in the literature: at least three are known (Garcı́a et al. 2014;
Mosser et al. 2017).
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5.1.3 Dependence on evolutionary stage

As mentioned earlier in this section, observed values of v1 are noted
to increase as the dynamical frequency �ν decreases. Variations
in �ν are closely tied to evolutionary stage, since the expansion
of the envelope as the star ascends the RGB causes �ν to drop.
Accompanying the evolution is a contraction of the core, which, as
we previously argued in Section 4.3, is associated with a drop in γ .
The predicted scaling is roughly γ ∝ R2

c , so that a star with v1 ≈
0.45 at �ν = 12 μHz would end up with v1 ≈ 0.6 at �ν = 4 μHz.
Although somewhat shallower than the trend seen observationally,
a large number of approximations have been used, some of which
may be questionable. For example, if it turns out that contraction
of the core allows the field configuration to relax further (so that ψ

is not in fact conserved), this would weaken the dependence of aj

on Rc and steepen the rise in v1 towards smaller �ν. However, it is
encouraging that the simple scaling dependences predicted by our
mechanism qualitatively reproduce this aspect of the observations.

5.2 Limitations

The exact quantitative values presented here are clearly sensitive
to the background model, and although we have only considered
one stellar model and field configuration, we have endeavoured to
use ones that are as realistic as possible. This work serves mainly
to illustrate the viability of our mechanism for producing damping
rates that are comparable to other known sources of damping (e.g.
convection), given reasonable field strengths. More detailed inves-
tigations of parameter space and the examination of different stellar
models would be the subject of future work.

Throughout this paper, we have considered only axisymmet-
ric spheroidal and torsional modes, where the axis of symmetry
matches that of the background field. This has been convenient
for the purposes of the analytic treatment here. We do not expect
the generalization to non-axisymmetry to adversely impact our re-
sults. The quality of the geometric overlap between the non-radial
spheroidal modes and the torsional Alfvén modes owes to the cross-
cut of field lines across a large number of fine-scale spatial oscil-
lations, which, for low-degree spheroidal modes, is relatively un-
affected by angular orientation. The description of torsional modes
in the non-axisymmetric case is complicated by the involvement
of motions in the poloidal as well as the toroidal direction. How-
ever, in the limit of small poloidal scales and small m (azimuthal
order), it can be shown that the non-axisymmetric torsional eigen-
functions closely resemble those found for the axisymmetric case in
that they are dominated by φ rather than θ -displacements. We there-
fore expect them to physically interact with the non-axisymmetric
spheroidal modes in a similar way to the axisymmetric case pre-
sented here, although the mathematical treatment would be less
trivial. A more detailed investigation of non-axisymmetric effects
will be deferred to future work.

We have assumed linearity of the fluid motions, even though the
smallness of the damping coefficient � suggests that large limit-
ing amplitudes of torsional motion may be attained. If non-linear
amplitudes are reached, wave breaking might be expected to occur.
Further work to investigate the complications of non-linearity has
yet to be performed.

We used a particular magnetic field configuration (the Prender-
gast solution) that was convenient to implement since it can be
written down in closed form. We acknowledge that it is only one
possible solution to the Grad–Shafranov equation; other equilibria
may be permitted in reality. However, the geometry of the field is

not particularly important to our mechanism, because for the same
characteristic Alfvén speed, the frequencies of potentially resonant
torsional modes are set by the spatial scale of the g-mode oscilla-
tions. This has no bearing on the length or the shape of the field
loops. Note that the typical conditions (field strengths, densities,
etc.) in red giant cores are such that the ratio of the Alfvén speed to
the g-mode wavelength fortuitously coincides with the frequency
of maximum excitation νmax of the spheroidal modes. Resonant in-
teractions proceed effectively for this reason (an alternate way of
understanding this is the requirement that gravity wave phase speeds
match the Alfvén speed). This should also be true of different field
configurations, including ones for which the spatial scale of the
field loops may be much smaller, as long as core field strengths are
similar across the red giant population.

The only other source of damping considered here, besides that
of our proposed mechanism, is that arising from convection. In re-
ality, radiative diffusion also contributes to the damping of g-mode
oscillations. We have done some rough estimates of the expected
rate of damping from radiative diffusion and find that it is several
orders of magnitude smaller than that associated with our proposed
mechanism (for � = 1 and 2; they may be on par for � = 3). This is
in line with previous works, which have determined that radiative
damping is small compared to convective damping for p-dominated
modes and have difficulty accounting for the low dipole mode am-
plitudes seen red giants (Dupret et al. 2009; Garcı́a et al. 2014); it
also offers no explanation for the dichotomy.

The primary source of systematic error in our quantitative es-
timates of γ arises from the finiteness of the grid. This impacts
the calculation in two ways. First, the torsional modes considered
here were limited to those with j ≤ 1000, which means that any
resonant modes with j > 1000 are lost to the sum in equation (44).
Importantly, this means that the damping rates presented here are
likely to be systematic underestimates, perhaps by a few tens of per
cent. A second way in which γ may be affected is by inaccuracies
in the shapes of the torsional modes when j is comparable to the
number of grid points. Tests comparing the eigenspectra generated
under different grid resolutions indicate that inaccuracies become
substantial for j values in excess of about half the number of grid
points (discrepancies in ω0, j of the order of unity are reached, when
compared to a five-fold increase in the number of grid points). If
an eigenfunction is not resolved properly, its aj values will not be
accurate, and it is not straightforward to predict whether system-
atically higher or lower values would be obtained. For the sake of
caution, we restricted the largest j value considered to be one-fifth
of the number of grid points. The overall error in our damping rates
is thus likely to be dominated by the former effect.

Finally, a key assumption is that the structure of the spheroidal
modes is unaffected by the magnetic field. Clearly if they were
to be modified significantly in the region of the core, then this
would impact our quantitative results. We stress that our mecha-
nism, as presented, is designed to operate in the weak-field regime
where this assumption holds. The works of Fuller et al. (2015)
and Lecoanet et al. (2017) have suggested that drastic alteration to
spheroidal mode structure is to be expected if the field exceeds a crit-
ical strength, and so we expect that in this regime, our mechanism
would break down, or require modification. We therefore address a
complementary regime to that of the above authors. On this note,
the significance of this work is that it demonstrates a new mecha-
nism for damping stellar oscillations that does not need to disrupt
the structure of the modes in any part of the star. This is precisely
what is required to account for the existence of the weak-amplitude
mixed modes reported by Mosser et al. (2017).
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6 SU M M A RY A N D F U T U R E WO R K

We have presented a mechanism for damping spheroidal modes
of red giant stars via resonant interactions with torsional Alfvén
modes localized to a magnetized core. Quantitative estimates of
the associated damping rates indicate that these can be comparable
to those of envelope-based sources. This may be a viable answer
to the dipole dichotomy problem in the case of weak core fields,
where the structure of the modes is expected to be preserved. To
our knowledge, there is no other mechanism that has been proposed
that achieves this for the weak-field regime.

Our mechanism can be summarized as follows. Turbulent con-
vection in the envelope excites the usual spheroidal modes restored
by pressure and buoyancy. If there is a magnetic field present inside
the core, then this allows, in addition, for the existence of torsional
oscillations restored by magnetic tension. These torsional modes
can be thought of as quantized vibrations on closed field loops
(standing Alfvén waves). Coupling to spheroidal motions proceeds
via the Lorentz force, since, in general, the Lorentz force associated
with spheroidal fluid displacements has a component in the torsional
direction (and vice versa). Though the fundamental frequencies of
torsional modes are small for realistic field strengths, resonances
with spheroidal modes are possible through the excitation of high
loop harmonics. The strength of the interaction is determined by the
quality of the geometric overlap between the two types of modes. In
red giants, spheroidal eigenmodes have extremely fine-scale radial
structure in the core, providing the ability for efficient overlap with
high loop harmonics through the cross-cut of field lines across many
radial oscillations. Under conditions of weak but non-zero dissipa-
tion, the energy lost to excitation of torsional resonances equals
the work done against the Lorentz force by the spheroidal motions.
The singular nature of the interaction acts as an energy sink, giving
rise to a global damping of the spheroidal modes that is larger when
more resonances are available. The observability of this effect relies
on the existence of modes that have large amplitudes both in the
core, so that overlaps with torsional resonances are significant, and
at the surface, so that the mode can be observed. Evolved stars meet
these conditions through a strong coupling of their p- and g-mode
cavities, which forms modes of mixed character.

As already discussed in Section 5.2, the effects of non-linearity
and non-axisymmetry have yet to be dealt with. A number of nu-
merical issues also limit the accuracy of our quantitative results,
which would need to be addressed before a detailed exploration
of parameter space (e.g. examining mass and age dependences) is
attempted. Also of interest is to investigate the consequences for
our mechanism of modification to the spheroidal mode structure
by a strong core field. The recent work of Lecoanet et al. (2017)
has presented local calculations of the process, but further work
(particularly the formulation of a global description) will be nec-
essary to develop a general theory for the magnetic damping of
stellar oscillations that encompasses both strong- and weak-field
regimes.
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