634 research outputs found
Middle Pliocene hominin diversity : Australopithecus deyiremeda and Kenyanthropus platyops
Geometric morphometric shape analyses are used to compare the maxillae of the Kenyanthropus platyops holotype KNM-WT 40000, the Australopithecus deyiremeda holotype BRT-VP-3/1 and other australopiths. The main aim is to explore the relationship between these two specimens and contemporary Australopithecus afarensis. Five landmarks placed on lateral views of the maxillae quantify key aspects of the morphology. Generalized Procrustes analyses and principal component analyses of the resulting shape coordinates were performed. The magnitudes of differences in shape and their significances were assessed using Procrustes and Mahalanobis’ distances, respectively. Both KNM-WT 40000 and BRT-VP-3/1 show statistically significant differences in maxillary shape from A. afarensis, but do so in dissimilar ways. Moreover, the former differs more from A. afarensis than the latter. KNM-WT 40000 has a more anteriorly positioned zygomatic process with a transversely flat, and more orthognathic subnasal clivus. BRT-VP-3/1 has a more inferiorly positioned zygomatic process, a slightly retracted dental arcade, but without shortening of the anterior maxilla. These findings are consistent with previous conclusions that the two fossils should be attributed to separate species, rather than to A. afarensis, and with the presence of three contemporary hominin species in the Middle Pliocene of eastern Africa
Measuring Well-being Outcomes In Older People Receiving Help From The Age UK ‘Together for Health’ Initiative: A Social Return on Investment Analysis: Final Report
The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation
PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating
Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed
Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals
Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Rα2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia
Onderzoek naar de kostprijzen van bessen en frambozen : (prijspeil 1948)
Rapport met de kostprijsberekeningen van bessen en frambozen
Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility
Leptictida are basal Paleocene to Oligocene eutherians from Europe and North America comprising species with highly specialized postcranial features including elongated hind limbs. Among them, the European Leptictidium was probably a bipedal runner or jumper. Because the semicircular canals of the inner ear are involved in detecting angular acceleration of the head, their morphometry can be used as a proxy to elucidate the agility in fossil mammals. Here we provide the first insight into inner ear anatomy and morphometry of Leptictida based on high-resolution computed tomography of a new specimen of Leptictidium auderiense from the middle Eocene Messel Pit (Germany) and specimens of the North American Leptictis and Palaeictops. The general morphology of the bony labyrinth reveals several plesiomorphic mammalian features, such as a secondary crus commune. Leptictidium is derived from the leptictidan groundplan in lacking the secondary bony lamina and having proportionally larger semicircular canals than the leptictids under study. Our estimations reveal that Leptictidium was a very agile animal with agility score values (4.6 and 5.5, respectively) comparable to Macroscelidea and extant bipedal saltatory placentals. Leptictis and Palaeictops have lower agility scores (3.4 to 4.1), which correspond to the more generalized types of locomotion (e.g., terrestrial, cursorial) of most extant mammals. In contrast, the angular velocity magnitude predicted from semicircular canal angles supports a conflicting pattern of agility among leptictidans, but the significance of these differences might be challenged when more is known about intraspecific variation and the pattern of semicircular canal angles in non-primate mammals
Onderzoek naar de kostprijzen van appelen, peren en pruimen : (prijspeil 1948)
Opbrensten, kostprijzen en productiekostenberekeningen van appels, peren en pruimen
Vestibular evidence for the evolution of aquatic behaviour in early cetaceans
Early cetaceans evolved from terrestrial quadrupeds to obligate swimmers, a change that is traditionally studied by functional analysis of the postcranial skeleton. Here we assess the evolution of cetacean locomotor behaviour from an independent perspective by looking at the semicircular canal system, one of the main sense organs involved in neural control of locomotion. Extant cetaceans are found to be unique in that their canal arc size, corrected for body mass, is approximately three times smaller than in other mammals. This reduces the sensitivity of the canal system, most plausibly to match the fast body rotations that characterize cetacean behaviour. Eocene fossils show that the new sensory regime, incompatible with terrestrial competence, developed quickly and early in cetacean evolution, as soon as the taxa are associated with marine environments. Dedicated agile swimming of cetaceans thus appeared to have originated as a rapid and fundamental shift in locomotion rather than as the gradual transition suggested by postcranial evidence. We hypothesize that the unparalleled modification of the semicircular canal system represented a key 'point of no return' event in early cetacean evolution, leading to full independence from life on land
Delayed ischaemia due to vasospasm after fenestration of a large arachnoid cyst
An 18-year-old patient developed multiple infarcts, nine days after endoscopic fenestration of a large arachnoid cyst. We consider vasospasm to be the most likely cause, presumably triggered by a chemical meningitis. Although mostly seen after subarachnoid haemorrhage, vasospasm can also occur after traumatic brain injury, brain surgery or meningitis
- …
