123 research outputs found

    Delays without Mistakes: Response Time and Error Distributions in Dual-Task

    Get PDF
    BACKGROUND: When two tasks are presented within a short interval, a delay in the execution of the second task has been systematically observed. Psychological theorizing has argued that while sensory and motor operations can proceed in parallel, the coordination between these modules establishes a processing bottleneck. This model predicts that the timing but not the characteristics (duration, precision, variability...) of each processing stage are affected by interference. Thus, a critical test to this hypothesis is to explore whether the quality of the decision is unaffected by a concurrent task. METHODOLOGY/PRINCIPAL FINDINGS: In number comparison--as in most decision comparison tasks with a scalar measure of the evidence--the extent to which two stimuli can be discriminated is determined by their ratio, referred as the Weber fraction. We investigated performance in a rapid succession of two non-symbolic comparison tasks (number comparison and tone discrimination) in which error rates in both tasks could be manipulated parametrically from chance to almost perfect. We observed that dual-task interference has a massive effect on RT but does not affect the error rates, or the distribution of errors as a function of the evidence. CONCLUSIONS/SIGNIFICANCE: Our results imply that while the decision process itself is delayed during multiple task execution, its workings are unaffected by task interference, providing strong evidence in favor of a sequential model of task execution

    Inter-rater reliability and stability of diagnoses of autism spectrum disorder in children identified through screening at a very young age

    Get PDF
    To examine the inter-rater reliability and stability of autism spectrum disorder (ASD) diagnoses made at a very early age in children identified through a screening procedure around 14 months of age. In a prospective design, preschoolers were recruited from a screening study for ASD. The inter-rater reliability of the diagnosis of ASD was measured through an independent assessment of a randomly selected subsample of 38 patients by two other psychiatrists. The diagnoses at 23 months and 42 months of 131 patients, based on the clinical assessment and the diagnostic classifications of standardised instruments, were compared to evaluate stability of the diagnosis of ASD. Inter-rater reliability on a diagnosis of ASD versus non-ASD at 23 months was 87% with a weighted κ of 0.74 (SE 0.11). The stability of the different diagnoses in the autism spectrum was 63% for autistic disorder, 54% for pervasive developmental disorder, not otherwise specified (PDD-NOS), and 91% for the whole category of ASD. Most diagnostic changes at 42 months were within the autism spectrum from autistic disorder to PDD-NOS and were mainly due to diminished symptom severity. Children who moved outside the ASD category at 42 months made significantly larger gains in cognitive and language skills than children with a stable ASD diagnosis. In conclusion, the inter-rater reliability and stability of the diagnoses of ASD established at 23 months in this population-based sample of very young children are good

    Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 97 (2009): 183-194, doi:10.1007/s10533-009-9365-1.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an arctic tundra ecosystem.This study was funded by NSF-DEB-0423385and NSF-DEB 0444592. Additional support was provided by Arctic Long Term Ecological Research program, funded by National Science Foundation, Division of Environmental Biology

    Neural Mechanisms of Human Perceptual Learning: Electrophysiological Evidence for a Two-Stage Process

    Get PDF
    Artículo de publicación ISIBackground: Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. Methodology/Principal Findings: We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.This research was supported by CONICYT doctoral grant to C.M.H. and by an ECOS-Sud/CONICYT grant C08S02 and FONDECYT 1090612 grant to D.C. and F.A

    Visual search performance is predicted by both prestimulus and poststimulus electrical brain activity

    Get PDF
    © The Author(s) 2016. An individual's performance on cognitive and perceptual tasks varies considerably across time and circumstances. We investigated neural mechanisms underlying such performance variability using regression-based analyses to examine trial-by-trial relationships between response times (RTs) and different facets of electrical brain activity. Thirteen participants trained five days on a color-popout visual-search task, with EEG recorded on days one and five. The task was to find a color-popout target ellipse in a briefly presented array of ellipses and discriminate its orientation. Later within a session, better preparatory attention (reflected by less prestimulus Alpha-band oscillatory activity) and better poststimulus early visual responses (reflected by larger sensory N1 waves) correlated with faster RTs. However, N1 amplitudes decreased by half throughout each session, suggesting adoption of a more efficient search strategy within a session. Additionally, fast RTs were preceded by earlier and larger lateralized N2pc waves, reflecting faster and stronger attentional orienting to the targets. Finally, SPCN waves associated with target-orientation discrimination were smaller for fast RTs in the first but not the fifth session, suggesting optimization with practice. Collectively, these results delineate variations in visual search processes that change over an experimental session, while also pointing to cortical mechanisms underlying performance in visual search

    Sequential Isotopic Signature Along Gladius Highlights Contrasted Individual Foraging Strategies of Jumbo Squid (Dosidicus gigas)

    Get PDF
    International audienceBackground: Cephalopods play a major role in marine ecosystems, but knowledge of their feeding ecology is limited. In particular, intra- and inter-individual variations in their use of resources has not been adequatly explored, although there is growing evidence that individual organisms can vary considerably in the way they use their habitats and resources. Methodology/Principal Findings: Using d13C and d15N values of serially sampled gladius (an archival tissue), we examined high resolution variations in the trophic niche of five large (.60 cm mantle length) jumbo squids (Dosidicus gigas) that were collected off the coast of Peru. We report the first evidence of large inter-individual differences in jumbo squid foraging strategies with no systematic increase of trophic level with size. Overall, gladius d13C values indicated one or several migrations through the squid's lifetime (,8-9 months), during which d15N values also fluctuated (range: 1 to 5%). One individual showed an unexpected terminal 4.6% d15N decrease (more than one trophic level), thus indicating a shift from higher- to lower-trophic level prey at that time. The data illustrate the high diversity of prey types and foraging histories of this species at the individual level. Conclusions/Significance: The isotopic signature of gladii proved to be a powerful tool to depict high resolution and ontogenic variations in individual foraging strategies of squids, thus complementing traditional information offered by stomach content analysis and stable isotopes on metabolically active tissues. The observed differences in life history strategies highlight the high degree of plasticity of the jumbo squid and its high potential to adapt to environmental changes

    Randomised controlled trial of improvisational music therapy's effectiveness for children with autism spectrum disorders (TIME-A): study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research has suggested that music therapy may facilitate skills in areas typically affected by autism spectrum disorders such as social interaction and communication. However, generalisability of previous findings has been restricted, as studies were limited in either methodological accuracy or the clinical relevance of their approach. The aim of this study is to determine effects of improvisational music therapy on social communication skills of children with autism spectrum disorders. An additional aim of the study is to examine if variation in dose of treatment (i.e., number of music therapy sessions per week) affects outcome of therapy, and to determine cost-effectiveness.</p> <p>Methods/Design</p> <p>Children aged between 4;0 and 6;11 years who are diagnosed with autism spectrum disorder will be randomly assigned to one of three conditions. Parents of all participants will receive three sessions of parent counselling (at 0, 2, and 5 months). In addition, children randomised to the two intervention groups will be offered individual, improvisational music therapy over a period of five months, either one session (low-intensity) or three sessions (high-intensity) per week. Generalised effects of music therapy will be measured using standardised scales completed by blinded assessors (Autism Diagnostic Observation Schedule, ADOS) and parents (Social Responsiveness Scale, SRS) before and 2, 5, and 12 months after randomisation. Cost effectiveness will be calculated as man years. A group sequential design with first interim look at N = 235 will ensure both power and efficiency.</p> <p>Discussion</p> <p>Responding to the need for more rigorously designed trials examining the effectiveness of music therapy in autism spectrum disorders, this pragmatic trial sets out to generate findings that will be well generalisable to clinical practice. Addressing the issue of dose variation, this study's results will also provide information on the relevance of session frequency for therapy outcome.</p> <p>Trial Registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN78923965">ISRCTN78923965</a>.</p

    Enrichment and characterization of ammonia-oxidizing archaea from the open ocean : phylogeny, physiology and stable isotope fractionation

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1796–1808, doi:10.1038/ismej.2011.58.Archaeal genes for ammonia oxidation are widespread in the marine environment, but direct physiological evidence for ammonia oxidation by marine archaea is limited. We report the enrichment and characterization of three strains of pelagic ammonia-oxidizing archaea (AOA) from the north Pacific Ocean that have been maintained in laboratory culture for over three years. Phylogenetic analyses indicate the three strains belong to a previously identified clade of water column-associated AOA and possess 16S rRNA genes and ammonia monooxygenase subunit a (amoA) genes highly similar (98-99% identity) to those recovered in DNA and cDNA clone libraries from the open ocean. The strains grow in natural seawater-based liquid medium while stoichiometrically converting ammonium (NH4 +) to nitrite (NO2 -). Ammonia oxidation by the enrichments is only partially inhibited by allylthiourea at concentrations known to inhibit cultivated ammonia-oxidizing bacteria. The three strains were used to determine the nitrogen stable isotope effect (15εNH3) during archaeal ammonia oxidation, an important parameter for interpreting stable isotope ratios in the environment. Archaeal 15εNH3 ranged from 13- 41‰, within the range of that previously reported for ammonia-oxidizing bacteria. Despite low amino acid identity between the archaeal and bacterial Amo proteins, their functional diversity as captured by 15εNH3 is similar.This work was supported by a Woods Hole Oceanographic Institution (WHOI) Postdoctoral Scholar fellowship to AES and the WHOI Ocean Life Institute

    The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain

    Get PDF
    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates
    corecore