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Abstract 

Archaeal genes for ammonia oxidation are widespread in the marine environment, but 2 

direct physiological evidence for ammonia oxidation by marine archaea is limited.  We 

report the enrichment and characterization of three strains of pelagic ammonia-oxidizing 4 

archaea (AOA) from the north Pacific Ocean that have been maintained in laboratory 

culture for over three years.  Phylogenetic analyses indicate the three strains belong to a 6 

previously identified clade of water column-associated AOA and possess 16S rRNA 

genes and ammonia monooxygenase subunit a (amoA) genes highly similar (98-99% 8 

identity) to those recovered in DNA and cDNA clone libraries from the open ocean.  The 

strains grow in natural seawater-based liquid medium while stoichiometrically converting 10 

ammonium (NH4
+) to nitrite (NO2

-).  Ammonia oxidation by the enrichments is only 

partially inhibited by allylthiourea at concentrations known to inhibit cultivated 12 

ammonia-oxidizing bacteria.  The three strains were used to determine the nitrogen stable 

isotope effect (15εNH3) during archaeal ammonia oxidation, an important parameter for 14 

interpreting stable isotope ratios in the environment.  Archaeal 15εNH3 ranged from 13-

41‰, within the range of that previously reported for ammonia-oxidizing bacteria.  16 

Despite low amino acid identity between the archaeal and bacterial Amo proteins, their 

functional diversity as captured by 15εNH3 is similar.  18 

 

20 
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Introduction 

Mesophilic archaea are ubiquitous and abundant members of diverse marine 2 

environments including coastal waters (Beman et al., 2010; Mincer et al., 2007, and 

references therein), marine sediments, estuaries (Bernhard et al., 2010; Mosier and 4 

Francis, 2008; Urakawa et al., 2010), stratified basins (Coolen et al., 2007; Lam et al., 

2007) and open ocean water columns (Beman et al., 2008; Church et al., 2010; Santoro et 6 

al., 2010). The recent cultivation of the first mesophilic marine archaeon, Nitrosopumilus 

maritimus, (Konneke et al., 2005; Martens-Habbena et al., 2009), two thermophilic 8 

archaea, Nitrosocaldus yellowstonii and Nitrosophaera gargensis (de la Torre et al., 

2008; Hatzenpichler et al., 2008), and a freshwater archaeon, Nitrosoarchaeum limnia 10 

(Blainey et al., 2011) established that at least some of these organisms are 

chemolithoautotrophic ammonia oxidizers.  Several studies coupling gene- and cell-based 12 

quantification of putative ammonia-oxidizing archaea (AOA) to rate measurements 

(Beman et al., 2008; Santoro et al., 2010; Wuchter et al., 2006) suggest that nitrification 14 

by AOA in the ocean is significant.  However, direct demonstration of ammonia-

oxidizing activity by the AOA genotypes encountered in the open ocean has not yet been 16 

demonstrated. 

  Ammonia oxidation is the first step of nitrification, a key remineralization 18 

reaction in the sea.  Work by Olsen (1981) and Ward et al. (1982) using 15N isotope 

tracers first suggested that nitrification in the upper ocean could be a significant source of 20 

regenerated nutrients for primary production. The quantitative role, however, of 

nitrification in the euphotic zone is still uncertain.  Recent syntheses of nitrification rates 22 

made using isotope tracers (Clark et al., 2008; Yool et al., 2007) suggest that globally, 
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nitrification may be a significant source of regenerated N for primary production, 

supplying as much as half of the necessary nitrate.  This has important implications for 2 

estimates of carbon export based on new production (Eppley and Peterson, 1979); an 

underestimation of nutrient regeneration would lead to an overestimation of export from 4 

the surface ocean (Ward, 2002). 

Though instantaneous rate measurements with 15N-labeled compounds provide 6 

important insights into the environmental controls on nitrification, they capture only a 

‘snapshot’ view of this undoubtedly time-varying process.  An alternative way of 8 

quantifying the importance of nitrification is using natural abundance stable isotope ratios 

to infer the relative importance of different nitrogen cycling processes.  In particular, 10 

nitrogen and oxygen stable isotope ratios (δ15N and δ18O) in marine nitrate (NO3
-) can 

integrate information about the relative sources (nitrification, upward diffusion, 12 

atmospheric deposition) and sinks (phytoplankton uptake) of NO3
- in the euphotic zone 

(Casciotti et al., 2008; DiFiore et al., 2009; Sigman et al., 2005; Wankel et al., 2007) and 14 

provide an independent constraint on the importance of nitrification to new production.  

In order to interpret these measurements, however, the isotope effects for the various 16 

sources and sinks of NO3
- must be known.  The isotope effects for NO3

- uptake by 

phytoplankton (Granger et al., 2004; Needoba et al., 2003) and NO2
- production by 18 

nitrifying bacteria (Casciotti et al., 2010; Casciotti et al., 2003; Mariotti et al., 1981) are 

relatively well studied, but there are no data on the isotope effects for ammonia oxidation 20 

by AOA.   

In this study we describe the enrichment and characterization of three strains of 22 

AOA from the water column of the North Eastern Pacific Ocean that oxidize NH3 to 
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NO2
-.  We used the three strains to estimate the nitrogen kinetic isotope effect (15εNH3) 

during ammonia oxidation by AOA.  Our results extend the ability for chemoautotrophic 2 

ammonia oxidation within the Archaea and expand the number of marine archaea for 

which we have both phylogeny and confirmed metabolic function.  We provide important 4 

constraints for the interpretation of natural abundance stable isotope ratios for these 

ubiquitous organisms in the marine nitrogen cycle. 6 

 

Materials and Methods 8 

Enrichment and cultivation. Enrichment cultures were initiated with water from the North 

Eastern Pacific approximately 300 km from shore (California Cooperative Oceanic 10 

Fisheries Investigations station 67-90; 35.46ºN, 124.91ºW) aboard the R/V Western Flyer 

during cruise CN107 in July 2007 (Table 1).  Seawater was collected from 25 m, 75 m, 12 

150 m, and 500 m depths using a standard 10 L Niskin rosette sampler equipped with a 

conductivity-temperature-depth sensor package.  Seawater was stored at 22ºC (25 m and 14 

75 m waters) and 4ºC (150 m and 500 m waters) in 500 mL acid-cleaned polycarbonate 

bottles.   After 20 months of incubation, filter sterile ammonium chloride (NH4Cl) was 16 

added to a final concentration of 10 µmol L-1 and the enrichments were monitored for 

production of NO2
- using standard colorimetric methods (Strickland and Parsons, 1968).  18 

At that time, the 150 m enrichment was moved to 13ºC and maintained at that 

temperature. Hereafter, the successful enrichments are referred to as CN25, CN75, and 20 

CN150 referring to the cruise name and depth of the enrichment inoculums.  

Cultures were maintained with transfers of 10 - 20% (v/v) late exponential phase 22 

culture into oligotrophic North Pacific (ONP) medium consisting of: 0.2 µm-filtered 
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North Pacific surface seawater amended with 10-100 µmol L-1 NH4Cl, 1 mL L-1 chelated 

trace elements solution (Balch et al., 1979), 15 µmol L-1 KH2PO4 and 100 µg mL-1 each 2 

streptomycin and ampicillin.  Maintenance cultures were grown in 200 mL volumes in 

250 mL acid-cleaned polycarbonate bottles.  Surface seawater for ONP medium was 4 

obtained either from the initial collection site or from the Pacific hydrographic station 

SAFe (Johnson et al., 2007). 6 

Abundance of archaeal and bacterial cells in the enrichments was periodically 

monitored in 1 mL formaldehyde-fixed culture volumes filtered onto 25 mm diameter, 8 

0.2 µm pore size polycarbonate filters (Millipore GTTP, Billerica, MA, USA) with 

catalyzed auto reporter deposition-fluorescent in situ hybridization (CARD-FISH) and 10 

epifluorescence microscopy using probes Cren537-554 and EUB338 I-III (Teira et al., 

2004).  12 

Phylogenetic analysis of 16S rRNA and amoA genes.  DNA was extracted and purified 

from 25 mL of culture after vacuum filtration onto 25 mm diameter, 0.2 µm pore size 14 

Supor membrane filters (Pall, Port Washington, NY, USA) using DNeasy columns 

(Qiagen, Valencia, CA, USA) as previously described (Santoro et al., 2008). Genes 16 

encoding for the 16S rRNA and the α subunit of ammonia monooxygenase (amoA), 

believed to contain the catalytic site for ammonia oxidation (Hyman and Wood, 1985), 18 

were amplified using PCR.  Target genes were amplified in 25 µL PCR reactions using 

the primers: 21F/1492R (archaeal 16S rRNA genes, DeLong (1992)), 20 

ArchamoAF/ArchamoAR (archaeal amoA, Francis et al. 2005), 27F/1492R (bacterial 16S 

rRNA), and amoAF*/amoAR (betaproteobacterial amoA, Stephen et al. (1999)) using 22 

reaction and thermocycling conditions described in the original manuscripts or as 
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modified in Santoro et al. (2010). Gammaproteobacterial amoA genes were amplified 

using the amoA3F/amoB4R primer set (Purkhold et al., 2000) using the following 2 

thermocycling profile: 95ºC for 3 min followed by 35 cycles of : 95ºC for 30 sec, 50ºC 

for 45 sec, and 72ºC for 1 min.  Genomic DNA from Nitrosococcus oceani was used as a 4 

positive control. PCR products were pooled, purified (MinElute PCR Purification Kit, 

Qiagen), and cloned using the TOPO-TA cloning kit with pCR4 vector and MACH1 6 

competent cells (Invitrogen, Carlsbad, CA, USA).  Plasmids were purified (Mini Prep 

Spin Kit, Qiagen) and sequenced on an ABI 3730xl sequencer.  Twelve archaeal 16S 8 

rRNA and amoA clones and 24 bacterial 16S rRNA clones were sequenced per 

enrichment. 10 

16S rRNA gene sequences were imported into the ARB software program 

(Ludwig et al., 2004) and aligned to a subset of the SILVA SSU reference database, Feb 12 

2009 release (Pruesse et al., 2007). Archaeal amoA sequences were manually aligned and 

imported into an ARB database maintained by our laboratory containing approximately 14 

2000 environmental amoA sequences.  Phylogenetic trees were constructed using 1,268 

nucleotide positions (16S rRNA) or 489 nucleotide positions (amoA) using maximum 16 

likelihood (RAxML) analyses implemented using the Cyberinfrastructure for 

Phylogenetic Research (CIPRES) Portal v3.0 (www.phylo.org) and visualized using 18 

FigTree v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).  Archaeal 16S rRNA gene and 

amoA sequences from this study were deposited in GenBank under the accession 20 

numbers HQ338108-HQ338109 and JF521547-JF521549. 

Growth curves.  Growth curves were determined for CN25 and CN75 at 22ºC in replicate 22 

200 mL volumes of ONP medium containing 50 µmol L-1 NH4
+.  At each time point, 15 
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mL of culture was removed.  Ten milliliters of culture were frozen for later [NO2
-] and 

[NH4
+] determination.  The remaining 5 mL of culture were immediately fixed with 2 

formaldehyde (2% final concentration) for four hours and replicate volumes (0.5 – 2 mL) 

of fixed culture were vacuum filtered onto 25 mm, 0.2 µm pore size polycarbonate 4 

membrane filters (Millipore) and frozen for later CARD-FISH analysis as described 

above. A minimum of ten fields of view were counted from each filter using the 100X 6 

objective on a Zeiss Axio Scope epifluorescence microscope.  [NH4
+] and [NO2

-] 

determinations were made in duplicate using phthaldialdehyde fluorescence (Holmes et 8 

al., 1999) and azo dye colorimetry (Strickland and Parsons, 1968), respectively. 

Allylthiourea inhibition experiments.  To assess the effect of the metal chelator 10 

allylthiourea (ATU) on archaeal ammonia oxidation, strain CN25 was grown in triplicate 

50 mL volumes in 60 mL polycarbonate screw cap bottles for each of three treatments: 12 

no ATU addition (control), 10 mg L-1 ATU (86 µmol L-1), and 100 mg L-1 (860 µmol L-

1).  ATU additions were made from a 10 mg mL-1 stock solution of ATU (Sigma) 14 

dissolved in water. Ammonia oxidation was monitored by the production of NO2
-, 

determined using azo dye colorimetry in 1 mL volumes (Strickland and Parsons, 1968).  16 

ATU was added to the treatment bottles after initial NO2
- production was detected in each 

flask (day 4).  Inhibition for the ATU treatments was calculated as the percent decrease in 18 

slope of a linear regression fit to the ln[NO2
-] over time compared with the control 

bottles. 20 

Nitrogen isotope effect estimates. For each experiment, 25 mL of enrichment culture was 

inoculated into 175 mL of ONP medium containing 10-25 µmol L-1 NH4
+ in a 250 mL 22 

acid-washed, screw-cap polycarbonate bottle.  Growth was not observed when 
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experiments were initiated with washed cell suspensions collected by filtration (data not 

shown), thus all experiments started with an initial [NO2
-] between 2 and 10 µmol L-1 as 2 

well as residual NH4
+ from maintenance cultures, in some cases. Temperature was 

maintained at 22 ˚C for CN25 and CN75 and 13 ˚C for CN150.  NO2
- production was 4 

monitored and 15 mL of enrichment culture was removed at each time point and frozen at 

-20ºC.  6 

Initial and time-course measurements of [NH4
+] and [NO2

-] were made in 

duplicate using phthaldialdehyde fluorescence (Holmes et al., 1999) and azo dye 8 

colorimetry (Strickland and Parsons, 1968), respectively, on 2 mL sample volumes.  

Error in replicate [NH4
+] analyses ranged from 2-7%; error in replicate [NO2

-] analyses 10 

was 0-8%.  Isotopic measurements of NO2
- were made by converting NO2

- to N2O using 

the ‘azide method’ (McIlvin and Altabet, 2005) with 10-20 nmol N per sample.  The 12 

resulting N2O was captured using a custom purge and cryogenic trapping system 

(Casciotti et al., 2002; McIlvin and Casciotti, 2010; McIlvin and Casciotti, 2011) and 14 

analyzed using a Finnigan DeltaPLUS XP isotope ratio mass spectrometer.  Each sample 

was analyzed in duplicate against RSIL nitrite reference materials N23, N7373, and 16 

N10219 run in parallel (Casciotti et al., 2007).  Results are reported using delta notation: 

δ15NNO2  (‰ vs. AIR) = [(15RNO2 / 15RAIR) -1] x 1000, where 15R = 15N:14N and AIR is 18 

standard atmospheric N2.  Error in replicate measurements of δ15NNO2 was 0.3‰ or better 

for all experiments. 20 

Calculation of 15εNH3 requires knowledge of the isotopic composition of the NO2
- 

produced over time since an arbitrary starting point.  If the initial [NO2
-] is zero, then the 22 

measured δ15NNO2 (δ15NNO2total) is equal to that produced  (δ15NNO2produced). If there is 
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NO2
- initially present, as in our experiments, the δ15NNO2produced at any time since the 

initial time point (i) must be calculated from δ15NNO2total using the following equations: 2 

(15N:14N)total * [NO2
-]total = (15N:14N)produced * [NO2

-]produced + (15N:14N)i * [NO2
-]i  Eq (1a) 

where (15N:14N)total = (15N:14N)AIR * (δ15NNO2total/1000 +1) 4 

Rearranging: 

(15N:14N)produced  = {(15N:14N)total * [NO2
-]total  - (15N:14N)i * [NO2

-]i} / [NO2-]produced Eq 6 

(1b) 

δ15NNO2produced = [(15N:14N)produced /(15N:14N)AIR -1] *1000         Eq (2) 8 

The isotope effect (15εNH3) was then calculated from the δ15NNO2produced data using the 

Rayleigh accumulated product equation (after Mariotti et al., 1981): 10 

 

δ15NNO2 produced
= δ15NNH 4 initial

+15ε NH 3
f ln( f )
1− f

 

 
 

 

 
    Eq (3) 

where f = [NH4
+]/[NH4

+]initial.  By Eq (3), the slope of a best fit line on a plot of δ15NNO2 12 

vs. f *ln(f)/(1-f) yields 15εNH3 and the y-intercept corresponds to the starting δ15NNH4.  

Because each experiment was initiated with a mixture of NH4
+ carried over from the 14 

enrichment transfer and ‘new’ NH4
+ from freshly prepared medium (δ15N ~ -3‰), minor 

variations in the δ15NNH4 (and the y-intercept) are expected between experiments and 16 

therefore each experiment was fitted separately.   Fitting and 95% confidence interval 

calculations were done using IGOR Pro software (v5, WaveMetrics, Inc., Lake Oswego, 18 

OR, USA). 

Use of the Rayleigh model presumes that ammonia oxidation proceeds as a 20 

pseudo one-step reaction with no accumulation of an intermediate product between NH3 

and NO2
- and no back-reaction of the products (Casciotti et al., 2003).  When estimated 22 
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in this way, several isotope effects are incorporated into 15εNH3 including a ~20-35‰ 

equilibrium isotope effect between NH4
+ and NH3 (Casciotti et al., 2011), as well as any 2 

isotope effects for NH3 or NH4
+ diffusion.  Errors in 15εNH3 resulting from these 

assumptions, as well as errors resulting from uncertainties in the archaeal ammonia 4 

oxidation pathway, are discussed below. 

 6 

Results 

Phylogeny and physiology.  Following 20 months of incubation in the dark with no 8 

amendments, archaeal amoA genes were detected by PCR in all four seawater 

‘enrichment’ bottles (25 m, 75 m, 150 m, and 500 m).  On addition of 10 µmol L-1 NH4
+, 10 

NO2
- production was observed in the enrichments from 25 m, 75 m, and 150 m within 

one month (data not shown). No NO2
- production was observed in the 500 m bottle.  The 12 

NO2
- producing enrichments are referred to as CN25, CN75, and CN150.  All three CN 

enrichments contained a high proportion of cells hybridizing with the CARD-FISH probe 14 

suite CREN537-554 and PCR amplifiable archaeal amoA genes.  No amoA genes from 

either gamma or betaproteobacteria were detected. 16 

After approximately one year of routine transfers into ONP medium (nearly three 

years after initial collection), the enrichments were highly enriched in archaeal cells (Fig. 18 

1) and the basic phylogeny and physiology of the enrichments were characterized.  A 

consensus archaeal 16S rRNA gene sequence was obtained from 12 clones from each 20 

enrichment.  One sequence from CN25 and two sequences from CN75 contained single 

nucleotide changes (all at different positions) from this consensus sequence.  22 

Phylogenetic analyses place all three sequences within the Marine Group I archaea, now 
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proposed as a new archaeal kingdom—the Thaumarchaeota (Brochier-Armanet et al., 

2008; Spang et al., 2010; Walker et al., 2010)(Fig. 2a).  The 16S rRNA gene sequences 2 

from CN25 and CN75 are 100% identical to each other, and 92% identical to N. 

maritimus.  Closest GenBank BLAST matches to the CN25 16S rRNA gene sequence are 4 

98% identical and include sequences from environmental clone libraries from 200 m 

depth off the Oregon coast (fosmid 4B7, U40238, (Stein et al., 1996)) and an unpublished 6 

deep sea hydrothermal vent clone from Suiyo Seamount (AB194001).  The CN150 16S 

rRNA gene is 98% identical to N. maritimus and 99% identical to several sequences from 8 

the Sargasso Sea metagenome (AACY020033564, (Venter et al., 2004)). 

The amoA sequences from CN25 and CN75 fall within a cluster of environmental 10 

sequences previously termed water column cluster ‘A.’ They are also 100% identical at 

the amino acid level to several sequences from the Sargasso Sea metagenome (Venter et 12 

al., 2004)(Fig. 2b) and 84% and 95% identical at the nucleotide and amino acid levels, 

respectively, to the amoA sequence from N. maritimus. The CN150 amoA gene is also 14 

84% identical to N. maritimus at the nucleic acid level.  Because CN25 and CN75 are 

identical at the 16S rRNA and amoA level, full genome sequencing may be necessary to 16 

resolve any strain-level differences between the two enrichments. 

Bacterial 16S rRNA gene clone libraries from the CN enrichments did not contain 18 

16S rRNA genes from any genera of known bacterial nitrifiers and contained sequences 

associated with the genera Erythrobacter and Gracilimonas.  Bacterial amoA genes could 20 

not be detected using PCR amplification. 

Stoichiometric conversion of NH4
+ to NO2

- was observed in all three enrichments 22 

coincident with an exponential increase in the number of archaeal cells, evidence that the 
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CN strains couple ammonia oxidation to growth (Fig. 3).  All three CN strains were able 

to utilize NH4
+ from the medium below our detection limit of ~200 nM.  Bacterial cells, 2 

as quantified by CARD-FISH, were not detectible until the archaeal population entered 

late exponential-early stationary phase. CN25 and CN75, growing at 22ºC, had lag phases 4 

of 4-10 days upon transferring 10 – 25% of the original culture volume into new medium, 

even when cultures were transferred during exponential phase growth.  Transfer volumes 6 

of less than 10% failed to grow (data not shown).  CN150, growing at 13ºC, had lag 

phases of up to 25 days. 8 

CN25 and CN75 were chosen for more detailed growth studies due to faster NH4
+ 

oxidation rates, shorter lag phases, and more consistent growth.  The CN25 growth rate at 10 

22ºC was 0.15 d-1; the CN75 growth rate was 0.17 d-1, corresponding to doubling times of 

about 4-4.6 d.     Stationary phase cell densities in CN25 and CN75 were 2.7 - 3.2 x 106 12 

cells mL-1 with 86-97% of cells hybridizing with archaeal CARD-FISH probes depending 

on the growth stage of the enrichment. 14 

Allythiourea (ATU) is frequently used to inhibit nitrifying activity in 

environmental studies.  We tested the effect of ATU on the ammonia oxidation rate for 16 

CN25.  An ATU concentration of 10 mg L-1
 (86 µmol L-1) inhibited the ammonia 

oxidation rate by 58%; an ATU concentration of 100 mg L-1 (860 µmol L-1) completely 18 

inhibited ammonia oxidation (Fig. 4). 

 20 

Nitrogen isotopic fractionation. To further investigate the physiology of the enriched 

strains, we determined their N kinetic isotope effect during ammonia oxidation (15εNH3).  22 

As in growth curve experiments, we observed near stoichiometric conversion of NH4
+ to 
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NO2
- over the course of the isotope fractionation experiments, with conservation in the 

DIN pool (NH4
+ + NO2

-) ranging from 74% to 107% with a mean of 97% (Table 2).   2 

 Results from replicate experiments are reported individually, as well as an 

unweighted average of experiments for a given enrichment (Table 2).  15εNH3 for CN25 4 

ranged from 14-30‰ with an average of 22 ± 5‰ (n = 11), 15εNH3 for CN75 ranged from 

10-37‰ with an average of 21 ± 10‰ (n = 6), and 15εNH3 for CN150 ranged from 16-6 

28‰ with an average of 22 ± 5‰ (n = 7).    Non-linearity was observed in most 

experiments with CN25 and CN75, with larger 15εNH3 (i.e. greater slopes) at the 8 

beginning of the growth curve when a large fraction (f) of the initial NH4
+ remained (Fig. 

5a,b). This leads to large uncertainties (expressed as 95% confidence intervals) in the 10 

slopes for many of the experiments with CN25 and CN75 (Table 2). We did not observe 

the same non-linearity of 15εNH3 in experiments with CN150 (Fig. 5c).  12 

  

Discussion 14 

Phylogeny.  We established three enrichments of marine archaea that stoichiometrically 

oxidize NH4
+ to NO2

-.  Multiple lines of evidence suggest that the archaea are the active 16 

ammonia oxidizers in the enrichments.  Archaeal cells increase exponentially 

concomitant with an exponential increase in NO2
- and amoA genes from the enrichments 18 

have a high identity to known archaeal ammonia oxidizers.  The enrichments lack 16S 

rRNA and amoA genes associated with known γ- or β-proteobacterial ammonia-20 

oxidizers. Though no NO2
- or NO3

- production was observed in the enrichment from 500 

m, this cannot be used to infer a lack of NH3-oxidizing ability in field populations at this 22 

depth as active NH3 oxidation was measured in situ (Santoro et al., 2010).  
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Both 16S rRNA and amoA gene sequences from the CN strains suggest they are 

representative of organisms present and active in the open ocean. CN25 and CN75 are 2 

97% identical to amoA sequences obtained in DNA-based clone libraries from the 

environment from which they were enriched (GU360825, (Santoro et al., 2010)) and 4 

CN150 is 100% identical to an amoA actively expressed in the environment (GU364088). 

The CN strains are also highly similar on the 16S and amoA level to abundant groups of 6 

open ocean archaea from a range of oceanic provinces including the Sargasso Sea, 

Fernandina Island, and the coast of Africa as indicated by BLAST searches of the Global 8 

Ocean Survey dataset (Rusch et al., 2007). Previous amoA-based phylogenies of AOA 

have shown that water column-derived sequences fall into two clusters termed ‘A’ and 10 

‘B’ (Francis et al., 2005) thought to represent a depth-dependent partitioning of AOA 

(Beman et al., 2008; Hallam et al., 2006; Mincer et al., 2007). The exact physiological 12 

basis for the partitioning of archaeal amoA genotypes is unknown but could include 

adaptations to temperature, light, or substrate availability.  Based on amoA sequences, all 14 

three CN strains belong to the shallow water column clade ‘A.’ Our data now associate a 

16S rRNA genotype with at least some members of the clade ‘A’ archaea distinct from N. 16 

maritimus that are likely to represent a new genus within the Thaumarchaea.  

 18 

Physiology.  The growth rate of CN25 and CN75 (0.17 d-1) in ONP medium is slower 

than growth rates reported for the cultivated AOA N. maritimus (0.65 d-1 at 30ºC, 20 

(Martens-Habbena et al., 2009) and N. yellowstonii (0.8 d-1 at 72ºC, (de la Torre et al., 

2008) and cultivated marine AOB (0.34 – 0.77 d-1
, (Prosser, 1990).  These differences can 22 

be partially explained by the lower cultivation temperature of the CN enrichments (22ºC) 
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relative to N. maritimus and N. yellowstonii. Further optimization of the culture medium 

may lead to increases in the growth rates reported here.  The per-cell activity rate for the 2 

CN strains, ~2 fmol NO2
- cell-1 d-1

, is lower than N. maritimus (13 fmol cell-1 d-1, 

(Martens-Habbena et al., 2009)), but similar to a mesocosm enrichment of archaea from 4 

North Atlantic (2-4 fmol cell-1 d-1)(Wuchter et al., 2006), and estimates of in situ per-cell 

activity rates in the California Current (0.2-15 fmol cell-1 d-1)  (Santoro et al., 2010).  6 

Multiple isolation strategies, including the addition of antibiotics and size 

fractionation through 0.45 µm filters, did not yield pure cultures of any of the CN strains.  8 

Dilution-to-extinction approaches were also not successful, as high dilutions of the CN 

strains did not grow (data not shown).  N. yellowstonii and N. gargensis, the two 10 

cultivated thermophilic strains of AOA, also could not be established in pure culture (de 

la Torre et al., 2008; Hatzenpichler et al., 2008).  This may be because there is a 12 

cooperative relationship between the bacteria and the archaea in these enrichment 

cultures, as has been reported in cultures of the marine chlorophyte Prochlorococcus, 14 

(Morris et al., 2008) and low cell density dilutions that do not contain the associated 

heterotrophic bacteria are unable to grow.  Interactions between the heterotrophic bacteria 16 

and autotrophic archaea in the enrichment, and in the ocean, will be an exciting area of 

future research. 18 

We observed partial inhibition of archaeal ammonia-oxidizing activity by ATU at 

86 µmol L-1, a concentration known to completely inhibit cultivated AOB (Hooper and 20 

Terry, 1973) and bacterial-rich environmental samples (Ginestet et al., 1998), and near 

complete inhibition of ammonia oxidation in CN25 was observed at 860 µmol L-1 ATU.  22 

The mechanism of ATU inhibition in AOB is thought to be chelation of the Cu active site 
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in the Amo protein (Bedard and Knowles, 1989). Our results are consistent with 

observations of N. gargensis (Hatzenpichler et al., 2008) and support the idea that ATU-2 

inhibited rates may represent conservative estimates of AOA-only activity in the field.  

Further, these results suggest that ATU should not be relied on for complete inhibition of 4 

nitrifying activity in environmental samples.  For example, nitrification rate 

measurements in the California Current showed variable (0-90%) but on average low 6 

levels of inhibition by ATU (mean 35%, n = 11) consistent with other lines of evidence 

supporting AOA activity in that study (Santoro et al., 2010).  On the other hand, Lam et 8 

al. (2009) reported complete inhibition of ammonium oxidation in the presence of 86 

µmol L-1 ATU in the Eastern Tropical South Pacific oxygen minimum zone. The 10 

physiology behind the differential response of AOA and AOB and different 

environmental communities to this inhibitor is unknown, but could be the result of 12 

different metal active sites for enzymes in the ammonia oxidation pathway between the 

two groups of organisms or differences in trace metal availability or trace metal affinity 14 

in different field locations. 

 16 

Nitrogen isotopic fractionation. Multiple experiments with the three archaeal enrichments 

suggest a 15εNH3 for archaeal ammonia oxidation of approximately 22‰.  This value falls 18 

within the reported 15εNH3 for bacterial ammonia oxidation of 14 to 42‰ (Casciotti et al., 

2010; Casciotti et al., 2003; Mariotti et al., 1981).  Thus, despite genome-inferred 20 

differences in the ammonia oxidation pathways of AOA and AOB (Walker et al., 2010), 

a difference in the magnitude of 15εNH3 between these two groups was not apparent. 22 
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The physiological reasons for the large range in 15εNH3 for both AOA and AOB 

are unknown, but could result from changes in growth state of the organisms or violations 2 

of assumptions associated with using the accumulated product equation to estimate 15εNH3 

from δ15NNO2 measurements. Factors to consider include variations in substrate 4 

concentration, ammonia oxidation rate, and loss of N to unmeasured pools. Furthermore, 

unbalanced growth could lead to accumulation of intermediate products in the multi-step 6 

oxidation pathway, leading to larger errors involved with characterization of ammonia 

oxidation as a single-step unidirectional reaction. At high starting [NH4
+], expressed 8 

15εNH3 values were consistently around 20-22‰, whereas at low starting [NH4
+], 

expressed 15εNH3 values were more variable (both higher and lower) and greater 10 

uncertainty was involved in their estimation (Table 2). Therefore, no direct relationship 

can be drawn between [NH4
+] and 15εNH3. Likewise, there is no direct relationship 12 

between ammonia oxidation rate (or oxidation rate/[NH4
+]) and 15εNH3 (Table 2). 

Though DIN conservation ([NH4
+ + NO2

-]) was not 100% in all experiments, the 14 

majority of experiments had NO2
- recoveries over 90% (Table 2), which is within the 

range reported for pure cultures of AOB (Casciotti et al., 2002; Mariotti et al., 1981). 16 

There is likely to be some loss of NH4
+ due to uptake for anabolic metabolism by AOA 

and the bacteria in the enrichments, but this sink should be small and consistent across 18 

experiments. This process could alter observed 15εNH3 values in proportion to the amount 

of NH4
+ assimilated and the isotope effect for NH4

+ assimilation (4-27‰; (Hoch et al., 20 

1992)). However, we emphasize that this effect is likely to be small and note that 

relatively high estimates of 15εNH3, not low ones, were observed where recovery was low 22 

(Table 2). We did not make measurements of [NO3
-] in the experiments described here, 
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but we have not observed NO2
- loss over time and have no evidence that NO2

- is further 

oxidized to NO3
- in any of the enrichments.  2 

In addition to variation between experiments, we found evidence for variable 

15εNH3 during archaeal ammonia oxidation within some experiments, with the greatest 4 

15εNH3 expressed at the early stages of growth.  This was particularly apparent for CN25 

and CN75 grown at low [NH4
+] (<20 µM), which exhibited a considerable lag phase prior 6 

to the commencement of ammonia oxidation.  Variable ε values have been observed in 

many other organisms, including denitrifiers (Granger et al., 2008), methane oxidizers 8 

(Templeton et al., 2006), sulfate reducers (Habicht et al., 2005) and nitrite oxidizers 

(Buchwald and Casciotti, 2010; Casciotti, 2009), and during assimilation of NH4
+ by 10 

heterotrophic bacteria (Hoch et al., 1992) but has not previously been reported in 

ammonia-oxidizing organisms.  We explore two hypotheses that could explain a large 12 

apparent isotope effect at the early stages of growth (Fig. 6).   

The first hypothesis is that, in the early stages of growth in batch culture, 14 

diffusion of NH3 and/or NH4
+ between the periplasm and the growth medium is rapid 

relative to the oxidation rate (Rdiff,NH3 or Rdiff,NH4 > RAMO) and enzymatic ammonia 16 

oxidation is the rate-limiting step.  In this scenario, the enzyme-level isotope effect 

(15εAMO), plus the equilibrium isotope effect between NH3 and NH4
+ (15εeq = 19‰; 18 

(Hermes et al., 1985), should dominate the observed 15εNH3 early in the experiment. In the 

later stages of growth, the reaction may become diffusion limited (Rdiff < RAMO) and the 20 

isotope effect for diffusion (15εdiff) would dominate. A similar mechanism has been 

examined for variations in expressed isotopic fractionation during NH4
+ assimilation by 22 

bacteria (Hoch et al., 1992) and marine algae (Pennock et al., 1996), as well as CO2 
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uptake by algae (Laws et al., 1997) and plants (O'Leary, 1981).  Diffusion of NH3 in 

aqueous solution is estimated to have an isotope effect of 20‰ (Hoch et al., 1992), which 2 

is similar to the late-stage 15εNH3 values we observed. However, this scenario would 

predict a direct relationship between [NH4
+] and 15εNH3 in experiments starting at 4 

different initial NH4
+ concentrations, which is not observed in our data (Table 2). If 

anything, we observe larger 15εNH3 values at low initial [NH4
+]. Therefore, we reject the 6 

hypothesis of diffusion limitation in controlling 15εNH3 in these experiments.  

It has been assumed here that the Amo-catalyzed reaction occurs in the periplasm, 8 

as it does in AOB, and that active transport of NH3 or NH4
+ into the periplasm from the 

medium does not occur. Genes for putative Amt transporters have been identified in the 10 

genomes of both AOB (Arp et al., 2007) and AOA (Blainey et al., 2011; Hallam et al., 

2006; Walker et al., 2010) and expression of these genes in environmental samples 12 

appears proportional to expression of amo genes (Stewart et al., 2011).  At this time it is 

uncertain whether Amt supplies N for anabolic metabolism serves a regulatory function 14 

(Arp et al., 2007), or supplies substrate to the Amo enzyme.  However, if Amt is 

localized for transport across the cytoplasmic membrane (Andrade et al., 2005), it would 16 

be difficult to envision a role for Amt in the 15εNH3 variations observed here. 

A second hypothesis to explain the within-experiment variations in 15εNH3 is that 18 

during early exponential phase growth, the first step of ammonia oxidation proceeds 

more quickly than the second step (RAMO > R2) and an as-yet unknown intermediate 20 

(NH2OH or HNO) accumulates. This intermediate pool would be isotopically depleted 

relative to NH4
+ outside the cell, and a second isotope effect would be expressed (15ε2; 22 

Figure 6) resulting in the production of NO2
- with a large apparent isotope effect.  If the 
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intermediate pool is eventually used up and ammonia oxidation proceeds as a pseudo 

one-step reaction, the apparent isotope effect should decrease to 15εAMO (plus 15εeq) late in 2 

the experiment.  This hypothesis is consistent with the fact that curvature in the Rayleigh 

plots was most prominent where long lag phases preceded ammonia oxidation, which 4 

may be associated with imbalanced growth early in the experiment.  Interestingly, if this 

hypothesis is correct, the similarity between average 15εNH3 (22‰) and 15εeq (19‰); 6 

(Hermes et al., 1985)) may indicate a small kinetic isotope effect for Amo.  Use of the 

Rayleigh distillation equation with measurements of δ15NNH4 would get around the 8 

potential problem from accumulation of intermediates, although it would still be affected 

by NH3/NH4
+ equilibration and NH4

+ transport effects discussed above. At this time there 10 

are many additional uncertainties in the archaeal ammonia oxidation pathway (Klotz and 

Stein, 2008; Walker et al., 2010) including the exact chemical intermediates, the 12 

localization of the respiratory enzymes within the cell, and the role of active NH3/NH4
+ 

transport that must be resolved before the mechanisms causing variable 15εNH3 can be 14 

fully explained. 

The ultimate goal of determining species-level isotope effects is to better interpret 16 

natural abundance stable isotope ratios (δ15NNO3 and δ18ONO3) in the environment. The 

average δ15N of marine NO3
- is set by the balance of N2 fixation and N removal by 18 

denitrification and anammox (Brandes and Devol, 2002), although nitrification can affect 

the partitioning of 15N between dissolved and particulate N (Wankel et al., 2007).  The 20 

potential for variable 15εNH3 adds an extra level of complexity to the interpretations of 

δ15NNO3 in the environment.  22 
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Nitrification is also the main determinant in setting the average δ18O of marine 

NO3
- (Casciotti et al., 2002; Sigman et al., 2009) and nitrous oxide (N2O) (Ostrom et al., 2 

2000; Popp et al., 2002). Determining the oxygen isotope effects for archaeal ammonia 

oxidation will therefore be an important next step in advancing the use of the dual isotope 4 

signatures of NO3
- and N2O to understand the marine nitrogen cycle. 

 6 
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Figure Legends 

Figure 1.  Fluorescence microscopy images of enrichment CN25 stained with (a) DAPI 2 

and (b) CARD-FISH using the Cren537-554 probe suite.  Both images are from the same 

field of view; the scale bar represents 5 µm. 4 

Figure 2.  Phylogenetic placement of the CN enrichments based on (a) 16S rRNA gene 

sequences (1,268 nucleotide positions) and (b) amoA gene sequences (489 nucleic acid 6 

positions). The CN enrichment sequences are shown in bold.  Trees were constructed 

using maximum likelihood methods (RAxML) using Sulfolobus solfataricus as the 8 

outgroup for the 16S rRNA tree and the soil and hot spring sequences as the outgroup for 

the amoA tree.  Bootstrap support values (>70%) are shown at nodes; some values have 10 

been removed from minor nodes for clarity. 

Figure 3.  Growth of enrichment CN75 in ONP medium.  Error bars denote one standard 12 

deviation and in some cases are smaller than the point. 

Figure 4.  Ammonia oxidation by CN25 in the presence of 10 and 100 µg mL-1 14 

allylthiourea (ATU). Each point represents the mean of three replicate bottles; error bars 

denote one standard deviation from the mean.   16 

Figure 5. δ15NNO2 during ammonia oxidation in batch culture for the archaeal enrichments 

(a) CN25, (b) CN75, and (c) CN150.  Kinetic isotope effects for ammonia oxidation 18 

(15εNH3) were calculated using linear regression of δ15NNO2 vs. f * ln(f)/(1-f) as described 

in the text and are reported in Table 2.  f is the fraction of the initial [NH4
+] remaining in 20 

the culture.  

Figure 6.  Potential pathways of NH3 acquisition and oxidation by ammonia-oxidizing 22 

archaea that could lead to a variable kinetic isotope effect (15εNH3) (Walker et al., 2010).  
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Req and 15εeq are the rate and equilibrium isotope effect for NH3/NH4
+ equilibration, 

Rdiff,NH4 and 15εdiff,NH4 are the rate and kinetic isotope effect for NH4
+ diffusion, Rdiff,NH3 2 

and 15εdiff,NH3 are the rate and kinetic isotope effect for NH3 diffusion, RAMO and 15εAMO 

are the rate and kinetic isotope effect for ammonia oxidation by ammonia 4 

monooxygenase (Amo), and R2 and 15ε2 are the rate and kinetic isotope effect for the 

second step of the ammonia oxidation pathway.  Major uncertainties in the archaeal 6 

oxidation pathway are shown in red. 

8 
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Supplemental Figure 1. Phylogenetic tree of 87 archaeal amoA sequences chosen to 

illustrate the relationship between the CN enrichments (shown in red), cultivated 2 

ammonia-oxidizing archaea, and environmental sequences from the enrichment site and 

other Pacific locations.  This Jukes-Cantor distance based tree is based on a 489 base pair 4 

alignment of the amoA gene. 

6 
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Table 1. In situ conditions for the starting material for North Pacific Ocean seawater 

enrichments used for archaeal kinetic isotope fractionation (15εNH3) determination.   2 

Enrichment Depth  Temp [NH4
+] [NO3

-] 
  (m) (ºC) (nmol L-1) (µmol L-1) 

CN25 25 14 40 0.5 
CN75 75 12 <15 2.2 
CN150 150 10 <15 15.1 

 

4 
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Table 2.  Experimental results for kinetic isotope effect (15εNH3) determinations during of 

archaeal ammonia oxidation.  CI 95% is the 95% confidence interval. [N+N] is the sum 2 

of the measured [NH4
+] and [NO2

-]. SD is standard deviation. 

Enrichment 
Experimen

t # 15εNH3 
CI 

95% 
Initial 
[NH4

+] 
[N+N]final:[N+

N]initial 

NH4
+ 

oxidation 
ratea 

 
  (‰) (‰) (µmol L-1)   

(µmol L-1 
d-1) 

CN25 1 25 1 15 1.05 3.0 
  28 28 15 1.05 2.5 
  30 83 15 1.05 2.1 
 2 25 52 9 0.99 0.4 
 3 26 21 16 0.74 0.8 
  14 4 16 0.98 0.9 
  15 3 14 1.07 0.4 
 4 20 7 76 1.03 4.5 
  21 6 77 1.02 4.5 
  20 4 77 1.02 4.5 
  20 4 76 0.97 4.4 
 

mean ± SD 
22 ± 
5‰    

 

CN75 1 37 58 10 0.81 0.4 
  20 5 10 1.05 0.4 
  14 NaNb 9 1.07 0.5 
 2 23 20 16 0.90 0.8 
  19 11 17 0.90 0.9 
  10 8 14 1.06 0.2 
 

mean ± SD 
21 ± 
10‰    

 

CN150 1 16 3 25 1.04 0.4 
  20 1 25 1.03 0.6 
 2 18 4 46 0.94 3.4 
  28 17 48 0.88 1.7 
 3 23 2 49 0.90 4.1 
  28 4 50 0.88 4.5 
  22 4 52 0.85 3.7 
 

mean ± SD 
22 ± 
5‰    

 

aApproximate NH4
+ oxidation rates were calculated from the change in [NO2

-] and the time elapsed 4 

between the first and final timepoints, and may underestimate the actual rate in experiments where the final 

time point was after all NH4
+ had been consumed. 6 
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bCalculating a confidence interval was not possible for this experiment because only two points were 

available to calculate the slope.2 
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