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Visual search performance is 
predicted by both prestimulus 
and poststimulus electrical brain 
activity
Berry van den Berg1,2,3,4, Lawrence G. Appelbaum1,5, Kait Clark6, Monicque M. Lorist2,3,4 & 
Marty G. Woldorff1,5

An individual’s performance on cognitive and perceptual tasks varies considerably across time and 
circumstances. We investigated neural mechanisms underlying such performance variability using 
regression-based analyses to examine trial-by-trial relationships between response times (RTs) and 
different facets of electrical brain activity. Thirteen participants trained five days on a color-popout 
visual-search task, with EEG recorded on days one and five. The task was to find a color-popout target 
ellipse in a briefly presented array of ellipses and discriminate its orientation. Later within a session, 
better preparatory attention (reflected by less prestimulus Alpha-band oscillatory activity) and better 
poststimulus early visual responses (reflected by larger sensory N1 waves) correlated with faster RTs. 
However, N1 amplitudes decreased by half throughout each session, suggesting adoption of a more 
efficient search strategy within a session. Additionally, fast RTs were preceded by earlier and larger 
lateralized N2pc waves, reflecting faster and stronger attentional orienting to the targets. Finally, SPCN 
waves associated with target-orientation discrimination were smaller for fast RTs in the first but not 
the fifth session, suggesting optimization with practice. Collectively, these results delineate variations 
in visual search processes that change over an experimental session, while also pointing to cortical 
mechanisms underlying performance in visual search.

In everyday life humans are constantly exposed to situations in which responding quickly and accurately is 
important. Hitting a baseball, driving a car, or swatting a mosquito all require clear vision, the appropriate allo-
cation of attention, and the correct response selection to achieve a goal. These abilities are in turn supported by 
a cascade of neurocognitive processes that must work in conjunction for successful behavior. Factors such as 
training, learning, fatigue, or lapses of attention affect the efficiency of these processes.

Training, for instance, has been shown to improve information processing1,2. In our previous paper we focused 
on the event-related processes that were modulated by training in a visual search task across five consecutive 
days3. Participants were presented with an array of ellipses and asked to find and identify a color-popout tar-
get among them and report its orientation. After five days of training, performance improved (i.e., participants 
became faster at responding without sacrificing accuracy), which was accompanied by training effects on the 
different phases of the cascade of neural processes, as reflected in series of event related potential (ERP) com-
ponents elicited by the visual-search arrays. However, a substantial portion of the within-subject variability in 
response-times (RTs) remained unexplained.

Besides training, there are two other important factors to consider when analyzing RT-performance. One 
factor is just the variability of performance from trial-to-trial, such as trial-to-trial variations in alertness, atten-
tional task focus, or some other time varying process4. A second, related factor is the amount of time performing 
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a task across a contiguous time period (e.g., within an experiment session). For instance, it has been shown 
that participants’ RTs and brain activity tend to vary across a session4,5, including Alpha power increases and 
N1 sensory-evoked ERP responses decreases across session. Such results suggest other changes in information 
processing that can be due to factors such as within-session learning, mental fatigue, or perhaps simply getting 
comfortable with the experimental procedures.

To investigate the mechanisms underlying these sources of task performance variation, we examined other 
facets and relationships of the visual search training data set3. In particular, instead of looking at between-session 
training effects, we explicitly focused on the within-subject RT variability, examining both the fluctuations occur-
ring from trial-to-trial and the changes due to the amount of time the participants had been performing the task 
within each session. To do so, different neural markers were examined to index changes in the cascade of cogni-
tive processes underlying the within-subject RT-variability.

Slow-wave CNV activity and oscillatory Alpha as markers for attentional preparation
Part of the within-subject variability in performance seems likely to derive from fluctuations in attentional prepa-
ration for each impending stimulus due to factors related to trial-to-trial fluctuations and changes across an 
experimental session. Attentional preparation might serve as an important predictor of how efficiently one will 
be able to process the upcoming target and respond to it6. Recordings of electrical brain activity provided by elec-
troencephalography (EEG) can serve as a useful method to investigate such attentional fluctuations. Two poten-
tial sources of information embedded in the EEG signal that can potentially index fluctuations in preparatory 
attention are the slow-wave fronto-central contingent negative variation (CNV)7 and oscillatory activity in the 
Alpha (8–14 Hz) frequency range8. While the CNV has been used as an index for more task-specific attentional 
preparation related to the fronto-parietal control network9,10, Alpha power has been used as an index for both 
general and selective attentional processes11–13, and decreases in Alpha power have been linked to improved target 
detection and improved visual processing14,15.

For instance, missing a target in a target detection task15, relative to when it was successfully detected, has 
been associated with higher-amplitude posterior Alpha power prior to the target occurrence. More recently, in 
a cued Stroop paradigm, preparatory CNV and Alpha activity was linked to attention and RT performance and 
that these relationships were modulated by motivation16. In that study, a cue indicated whether a quick and cor-
rect response to an impeding Stroop stimulus could potentially be rewarded or not. The results showed that 
cue-evoked CNV activity was higher and preparatory Alpha power was lower in amplitude when there was a 
potential reward. In addition, higher amplitude CNV and lower-amplitude Alpha power also predicted that the 
response to the upcoming Stroop stimulus would be faster.

ERP components as markers for visual processing, orientation of attention, and 
target-feature processing
Performance is not only dependent upon pre-target attentional preparation and alertness, but also on the pro-
cessing of the target stimulus itself. Visual processing of a stimulus can be indexed by the posterior N1 ERP com-
ponent (a negative deflection over the posterior channels ~150 ms)17,18. For instance, in studies which spatially 
cued participants to direct attention to the potential location of an upcoming visual target stimulus, the N1 was 
enhanced when spatial attention was present at the location of the target stimulus as compared to when attention 
was directed elsewhere17. It was also found that this N1 enhancement was present when participants had to dis-
criminate the visual stimulus and not when the participants’ task was a simple reaction task. These results show 
that the N1 can serve as a neural index of visual processing and can be modulated by preparatory attention.

The subsequent reactive orienting of attention towards a lateral target in a visual-search array can be indexed 
by the hallmark N2pc ERP component19. The N2pc, peaking approximately 200 ms after stimulus-array onset, 
consists of an enhanced negative wave over the occipital cortex contralateral versus ipsilateral to the target stimu-
lus. The further processing of target information (i.e. discrimination of specific features of the target) is reflected 
in the somewhat later sustained posterior contralateral negativity (SPCN, also known as the contralateral delay 
activity [CDA]). Previous research of working memory has shown that the amplitude of the SPCN/CDA depends 
on the demands placed on working memory20,21. Relatedly, in a visual search task where the size of the search 
array remained constant but the difficulty in discrimination of the target stimulus increased, the amplitude of the 
SPCN also increased22.

In the present study, we analyzed the relationships between within-subject variability in visual-search RTs and 
these electrical measures of specific facets of the functional brain activity, with the goal being to gain insight into 
the neural mechanisms underlying within-subject variability in cognitive task performance.

Methods
Participants. Nineteen healthy volunteers (5 female; 18–35 years old) participated in the study. All par-
ticipants had normal or corrected-to-normal visual acuity and had normal color vision. The experiment was 
conducted in accordance with protocols that were approved by the Duke Medical Center Institutional Review 
Board. Written informed consent was obtained from all participants. Participants received 15 dollars per hour 
in compensation. Data from two participants was excluded due to poor behavioral performance (2 SD below the 
group mean), and data from another four participants was excluded from the analysis due to excessive EEG noise 
(mostly artifacts from horizontal eye movements - see EEG preprocessing). Thus, data from a total of 13 subjects 
were included in the final analysis.

Task and Stimuli. Stimuli were presented on a 19-inch CRT monitor using Presentation (Neurobehavioral 
Systems, Albany, CA), with participants seated at a viewing distance of 57 cm. Participants completed five sessions 
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of the visual search paradigm across five consecutive days. Each session consisted of 14 four-minute blocks, each 
with 140 trials, yielding a total of 1960 trials per session. Participants were given a short break after each block.

Each trial consisted of a visual search array, which remained on the screen for 50 ms, and a variable 
inter-trial-interval (ITI, 1250–1650 ms) (Fig. 1). A white fixation cross remained onscreen during both the visual 
search array and the ITI. The visual search array consisted of an array of 48 horizontal and vertical ellipses, each 
subtending a visual angle of ~1.36 ×  ~0.91 degrees. One ellipse in each array was green (the target popout) and 
one was red (a non-target popout), with the rest of the ellipses all being blue. Participants were asked to detect the 
green target ellipse, discriminate its orientation (horizontal or vertical), and indicate the orientation by pressing 
either the left or right button on a Logitech gamepad using the index finger of the left or right hand.

EEG recording and preprocessing. EEG was recorded during sessions 1 and 5, using a 64-channel, cus-
tom, extended–coverage electrode cap (ElectroCap International, Eaton Ohio). The EEG signals were amplified 
within the 0.016 to 100 Hz frequency band and each channel was sampled at 500 Hz. During cap application, 
impedances of all channels was adjusted to below 5 kΩ. Eyeblinks were corrected using independent component 
analysis (ICA). Prior to the IC decomposition, epochs were extracted from − 0.5 to 1.5 s surrounding the pres-
entation of the visual search array. Epochs that contained high levels of noise were excluded from ICA decom-
position (using a − 150 to 1500 μ V threshold detection from which the ocular channels were excluded - the 
asymmetry of this threshold ensured that most eyeblinks remain in the data). The EEG data were filtered offline 
using a zero-phase-shift finite-impulse-response filter with 0.5 highpass and 60 hz lowpass filter settings, which 
were subsequently down-sampled to 250 Hz. Subsequently, independent components (ICs) were extracted using 
the extended infomax algorithm as implemented in EEGlab13.4.4.b23. Finally, all ICs were copied to the original 
raw data, which was filtered using a zero-phase-shift 60 Hz lowpass filter and subsequently down-sampled to 
250 Hz. IC components that reflected eyeblinks (1 or 2 ICs per participant) were removed from the data. Finally 
epochs were extracted from − 2.5 until 2.5 s after onset of the visual search array. Epochs containing any remain-
ing artifacts (horizontal eye movements, muscle noise) were detected using a 110 μ V threshold − 1.5 to 1.5 s [the 
threshold was slightly adjusted for some participants] and a 30 μ V step function − 0.2 to 1 s around the target) and 
excluded from further analysis.

Frequency decomposition for the oscillatory analysis was performed by means of multiplying the data with a 
sliding tapered Hanning-window from − 1 to 1 s around the onset of the visual search array. The sliding window 
moved across time with steps of 50 ms. The tapered window had a width of 3 cycles for 3 to 7 Hz, 5 cycles from 
8 to 14 Hz and 10 cycles for above 14 Hz for determining power in the theta, alpha and beta band, respectively. 
Frequency power was estimated by means of a discrete Fourier transform from 2 to 30 Hz with a resolution of 
1 Hz. (as implemented in the FieldTrip toolbox24). Subsequently, the natural log transformed power (P) for every 
trial (i) was converted for every time (t), frequency (f) and electrode (e) data point to a z-score, across both ses-
sions according to the following equation:

=
− µ

σ
.Z (i)

P (i)
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f,t,e f,t,e
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Classically, ERP analysis is done by selecting a subset of trials based on some criteria (e.g., different cognitive 
conditions, a median split based on RTs) and averaging the corresponding EEG epochs to yield the ERP (or 
time-locked-averaged EEG signal). However, by discretizing continuous variables (e.g., RTs), one can lose sub-
stantial power25,26. To more fully utilize the continuous nature of RTs across trials, as a final preprocessing step a 
linear model was run on both the raw EEG and decomposed frequency data in which the dependent variable was 
either the EEG amplitude in microvolts or the log and z-transformed power. For the predictor variables, first, the 

Figure 1. Each search array contained 48 ellipses; 46 of those were in blue, one was green (target) and one 
red (distractor). The search array remained onscreen for 50 ms, and after a variable ITI (1250–1650 ms) the 
next search array appeared onscreen.
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RTs and time-in-session were z-transformed for each session separately (z-transformed time-in-session results in 
the same scale for both sessions). After transforming the data, a linear model was run separately for every subject, 
session, time, and scalp channel, or in the case of the frequency data every frequency point. The associated design 
matrix thus had the following specifications: target side (left or right), RTs (z-transformed), and time-in-session 
(z-transformed trial number). Additionally, interactions between each factor were included in the design matrix. 
Time-in-session z-transformed values represented the scaled number of visual search trials the participant had 
performed up to that point within the session.

The estimated beta weights obtained from the linear model, for both the ERP and oscillatory analysis, were 
used to model the responses for the different conditions. This resulted in the different ERPsm and ERSPsm (event 
related spectral perturbations) for each subject and condition of interest (subscript “m” stands for “modeled”). To 
visualize the different conditions we chose the following parameters for time-in-session: early [1.5sd in z-space, 
corresponding to ~trial 130 within a session] and late [~trial 1830]) and the parameters for RTs: fast [− 1.5 sd 
below the mean of that subject within a session] and slow [1.5 sd above the mean for that subject within a ses-
sion]). As a result, the final ERPsm or ERSPsm could, for example, represent a fast response, in the target left con-
dition, early in the first session. These ERPsm values contain the intercept, and consequently the traditional ERP 
morphology is maintained, using these modeled values, which is crucial for being able to analyze, visualize and 
compare these modeled ERPsm responses with standard ERPs in the existing literature. Accordingly, the resulting 
event-related ERPsm and ERSPsm can be analyzed similarly to a traditional ERP analysis with the advantage of 
utilizing the continuous nature of time-in-session and RTs27,28.

To analyze potential preparatory slow-wave CNV activity we estimated a linear slope prior to stimulus onset 
(− 700 to 0 ms) on each trial and each channel. Subsequently we ran the regression model on these slope coeffi-
cients. Finally, to analyze the N2pc and SPCN components, the activity in the ipsilateral channels (relative to the 
target ellipse) was subtracted from the activity in the contralateral channels (relative to the target ellipse), and 
then was collapsed over target side19.

Statistical Analysis. Behavioral data (RTs and accuracy) were analyzed using repeated-measures ANOVAs. 
Mean accuracy (correct trials divided by total number of trials), RTs, and variability (SD) were calculated for each 
bin of 280 trials (i.e. 2 blocks). Occipital Alpha oscillations and the N1, N2pc, and SPCN ERP components were 
determined in two occipital regions of interest (ROIs) (channels 41, 43, 53, and 55, corresponding to the four sites 
in our caps nearest to standard sites P07 and O1, and channels 42, 44, 54, 56; corresponding to our four sites near-
est to standard sites P08 and O2). Mean amplitudes from the regression-derived ERPsm and ERSPsm were calcu-
lated for each condition. Prestimulus Alpha power (8–14 Hz) was measured between − 700 ms and stimulus onset. 
Mean peak amplitudes were calculated for the N1 (136 to 176 ms), the N2pc (200 to 250 ms) and the SPCN (350 
to 600 ms). Onset latency of the N2pc was assessed by measuring for each subject and condition the time-point 
at which the N2pc reached an amplitude of 0.75 uV, which was 50% of the smallest N2pc condition (absolute 
criterion29. We defined a fronto-central ROI (Cz, Fz and their neighboring lateral channels) to measure the CNV.

For statistical analysis of the ERPm and ERSPm data, we defined three factors; first, the session effects (i.e. ses-
sion 1 vs. session 5), second, the effect of speed (fast vs. slow RTs − 1.5 SD above or below the participants mean RT 
for each session), and finally, the effect of time-in-session (how many visual search trials a participants had per-
formed within a single session, which again was extracted from the model for the activity around trial# 130 and 
trial# 1830 for early and late, respectively). To test the effects of session, speed, and time-in-session on brain acti-
vations, we ran a three-way repeated measures ANOVA with those factors. Together with the repeated-measures 
ANOVA we reported generalized effect sizes30,31, ηg

2. Additionally, repeated-measures t-tests were conducted to 
interpret significant interactions (p <  0.05).

To examine the relationship between prestimulus Alpha and the posterior N1, we extracted the amplitudes of 
the prestimulus Alpha and the N1 (according to the time-of-interest and region of interest specified above) from 
the single trials from each session. Subsequently we extracted the correlation coefficients between prestimulus 
Alpha and N1 separately for each subject. Finally, we conducted t-tests on the obtained correlation coefficients. 
All statistical analyses were performed using the statistical programming language R32.

Results
Behavior. As previously reported3, participants showed significantly faster RTs in session 5 compared to ses-
sion 1, while accuracy remained relatively unaffected by training (RTs [SD]: session 1: 554 ms [66] and session 5: 
467 ms [53]: F(1, 12) =  99.0, p <  0.001; Accuracy[SD]: session 1: 90% [5.4] and session 5: 91% [6.6]: F(1, 
12) =  0.16, n.s.). Closer inspection of the RT distributions (Fig. 2a), however, revealed that, irrespective of the 
observed performance improvement between sessions, variation in RTs within each of the session remained. 
Moreover, in both sessions we observed a decrease in RT within a session (time-in-session: (F(1, 12) =  13.0, 
p =  0.003) (Fig. 2b). The mean variability across subjects in RTs in session 1 was 110 ms, which decreased after the 
multi-day training to 81 ms in session 5 (F(1, 12) =  72, p <  0.001, ηg

2 =  0.31). Additionally, the RT variability did 
not significantly change with time-in-session (F(1, 12) =  0.11, p =  n.s., ηg

2 <  0.01). Accuracy remained constant 
across each session (F(1, 12) =  0.42, n.s.).

Electrophysiological results. The electrophysiological results and statistics presented here as ERPsm and 
ERSPsm (modeled ERPs and modeled ERSPs) are all based on the regression-derived coefficients. These regression 
coefficients were derived separately for each time, channel, and, for the ERSPsm, frequency point. Subsequently 
using these coefficients, including the intercept, we reconstructed ERPm and ERSPm analogues to a classic factorial 
design that would be derived with conventional selective averaging. The results are visualized for responses that 
were given near the beginning (trial number 130) or end (trial number 1830) of each session. Additionally, for 
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the RTs, results are based on the estimated neural activity when the participant’s response speed was 1.5 SD above 
or below its mean separately for each session. These values would correspond to the points on the regression line 
where ~13.4 percent of the responses were faster or slower than 1.5 SD below or above the mean, respectively. By 
z-transforming the RTs for every subject and session we removed any effects due to multi-day training, and the 
reported effects are within-subjects and within-session effects. Although we visualized the extreme responses as 
those are most interesting to our research question, note that due to the linear modeling, the ERPsm related to the 
mean RT are identical to the mean ERPsm of the fast and slow responses.

Prestimulus brain activity. As noted above, the behavioral analysis indicated substantial within-subject 
variation in the RTs. We subsequently investigated how slow-wave CNV activity and oscillatory power preceding 
the presentation of the search array contributed to the RT variability (Figs 3 and 4).

Prestimulus Alpha power was derived from the linear model coefficients of the regression analyses. There was 
a significant interaction between Alpha power and response speed (time-in-session ×  speed: F(1, 12) =  10.7, 
p =  0.006, ηg

2 =  0.032) (Fig. 3a,b). Early within a session, Alpha power preceding slow and fast RTs did not differ 
significantly (t(12) =  1.4, n.s.), while late within a session slower RTs were preceded by higher amplitude 
pre-stimulus Alpha compared to fast ones (t(12) =  − 2.38, p =  0.035) (Fig. 3c). This pattern of results suggested 
that trial-to-trial fluctuations in preparatory Alpha activity were related to RT variability, but this relationship 
depended upon the amount of time and trials the participant had been performing the task. Important, this rela-
tionship between speed and time-in-session did not change after training (speed ×  time-in-session ×  session:  
F(1, 12) =  0.25, n.s., ηg

2 <  0.01). Finally, prestimulus alpha power increased with time-in-session during session 1, 
but not in session 5 (Fig. 3d: time-in-session ×  session: F(1, 12) =  5.2, p =  0.046, ηg

2 =  0.016; late minus early: 
session 1: t(12) =  2.4, p =  0.032.; session 5: t(12) =  1.3, n.s.).

The slow-wave CNV analysis (Fig. 4) revealed a negative deflection prior to the onset of the search array (cen-
tral ROI - mean slope − 2.37 μ V per 700 ms; F(1, 12) =  17, p =  0.001, ηg

2 =  0.46), suggesting that there was a 
CNV-like prestimulus negative deflection. The relationship of the slope of this prestimulus wave with RTs was 
significant (central ROI - F(1, 12) =  5.6, p =  0.036, ηg

2 =  0.039) for which faster RTs were preceded by a steeper 
prestimulus negative slope. Additionally, over the course of the experiment the slope became steeper (central ROI 
- F(1, 12) =  12, p =  0.005, ηg

2 =  0.078). There was no interaction between speed, time-in-session and session.

Stimulus-evoked sensory-processing activity. The ERPm traces and topographic distributions of the 
posterior N1 (Fig. 5) revealed that, independent of session (session ×  time-in-session: F(1, 12) =  0.11, p =  n.s., 
ηg

2 <  0.01), this component dramatically decreased in amplitude over the course of the session (early: − 4.7 μ V, late: 
− 2.0 μ V; time-in-session: F(1, 12) =  47.0, p <  0.0001, ηg

2 =  0.25) (Fig. 6a). Moreover, we observed that the N1 was 
more negative (i.e. larger) for fast RTs compared to slow ones (F(1, 12) =  23, p <  0.0001, ηg

2 =  0.03), an effect that 
was stronger later in a session (speed ×  time-in-session: F(1, 12) =  8.9, p =  0.014, ηg

2 =  0.01, early: t(12) =  −2.9, 
p =  0.01; late: t(12) =  − 4.2, p =  0.001) (Fig. 6b). The ERPm traces indicated a potential posterior P1 effect for fast 
versus slow RTs but statistical analysis did not reveal a significant effect (F(1, 12) =  3.1,p =  0.11, ηg

2 <  0.01).
The relationship between time-in-session and response speed on the N1 was similar to that observed for the 

slow-wave CNV and prestimulus Alpha power. Accordingly, we examined the relationships between prestimu-
lus Alpha power, slow-wave CNV, and the amplitude of the stimulus-evoked N1. First, we extracted prestimu-
lus alpha power and N1 amplitude on every trial, which we subsequently correlated with each other separately 
for each subject, and from which we calculated the mean correlation across subjects, revealed that there was 
an inverse relationship within-subject between prestimulus alpha power and N1 amplitude (mean r =  0.11, 
t(12) =  4.3, p =  0.001). More precisely, higher amplitude prestimulus alpha power was followed by lower ampli-
tude N1s evoked by the stimulus array. Similarly, the N1 and the slow-wave CNV also correlated (mean r =  − 0.14, 
t(12) =  − 12, p <  0.0001), with steeper prestimulus CNV activity being followed by higher amplitude N1s evoked 

Figure 2. Performance in session 1 and 5. (a) Probability density plot showed that there was substantial RT 
variability within sessions 1 and 5. (b) Part of this variability can be explained by an overall decrease in RTs 
during each session. Each point shows the mean RT for two blocks (280 trials).
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Figure 3. Changes in regression-derived oscillatory power over the occipital channels as a function of RTs. 
(a) Rows depict the different sessions (1 and 5), and columns reflect time-in-session (early and late).  
(b) Topographic maps show that most of the oscillatory effects for activity preceding fast versus slow RTs were 
over the occipital cortices and late within each session. This pattern of results was similar for session 1 and 
session 5. (c,d) Plots reveal the relationship between Alpha power and speed (c) and between Alpha power and 
time-in-session (d). Although Alpha power increased significantly throughout session 1, during session 5 this 
effect was smaller and did not reach significance. (d) Within each session, fluctuations in Alpha power had a 
more profound effect later within the session.
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Figure 4. Steeper prestimulus slow-wave CNV activity (700 to 0 ms) preceded fast compared to slow RTs 
and late vs early in the session. 

Figure 5. Effect of RT on regression-derived ERP amplitudes (μVm) on early visual sensory processing 
(as reflected by the early sensory-evoked N1 component). Rows depict the different sessions (session 1 and 
session 5), and columns reflect time-in-session within each session (early and late).
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by the stimulus arrays. Strikingly, there was no observable correlation between the slow-wave CNV amplitude 
and prestimulus alpha power (mean r =  − 0.024, t(12) =  − 1.6, p =  0.14), suggesting separability between the pro-
cesses these two neural preparatory neural markers reflect.

Electrophysiological Results: Attentional orienting to the array target. In addition to being able 
to investigate effects on the N1 component reflecting early sensory processing, the design of the visual search 
paradigm allowed us to leverage the lateralized nature of brain activity reflecting the attentional orienting to, and 
processing of, the target item. In particular, the contra-minus-ipsi lateral analysis showed two attention-related 
ERP markers of interest: the N2pc and the SPCN, which index the orientation of attention and the further pro-
cessing of target features, respectively. The regression-derived ERPm waveforms in Fig. 7 showed that the N2pc 
was larger if the target was followed by fast responses compared to slower ones (effect of speed collapsed across 
session: F(1, 12) =  16.7, p =  0.0015, ηg

2 =  0.1). Additionally, the onset of the N2pc was slightly delayed (20 ms), 
when followed by slower responses compared to fast ones. This, in turn, was reflected by the N2pc amplitude 
showing a significant earlier difference (165 ms compared to 185 ms after onset of the search array) for fast com-
pared to slow responses (F(1, 12) =  12, p =  0.004, ηg

2 =  0.05).
The ERPsm for the contra-minus-ipsi analysis as shown in Fig. 7 also extracted the SPCN, which appeared to 

be larger for slower responses compared to fast ones, at least in session 1. Statistical analysis indeed confirmed 
that response speed was related to SPCN amplitude throughout session 1, but not in session 5 (session ×  speed 
interaction: F(1, 12) =  6.6, p =  0.024, ηg

2 =  0.013, effect of speed session 1: t(12) =  2.9, p =  0.014; effect of speed in 
session 5: t(12) =  0.3, p =  n.s.) (Fig. 8).

In summary, these results showed that both the N2pc and SPCN were related to RT performance: for fast (vs. 
slow) RTs the N2pc was larger and earlier, throughout both session 1 and session 5. In contrast, the SPCN was 
smaller for slow versus fast RTs in session 1, but this relationship disappeared after training

Discussion
In the present study we investigated the cognitive and neural mechanisms that were related to within-subject 
variability in RT task performance during a visual-search task. For this purpose we examined a number of unex-
plored aspects of the data set from our visual-search training study3. In that study, participants were trained in 
visual search over five consecutive days, and during the first and fifth session high-temporal-resolution EEG 
was recorded. The report3 focused on the training effects between sessions, finding that training improved 
performance efficiency and modulated various event-related neural processes. However, there was sub-
stantial within-subject variability in the RTs, both before and after training. To investigate the sources of this 
RT-variability, we examined a set of unexplored relationships between the RT fluctuations and various attention- 
and perception-related processes. In particular, we investigated how these relationships changed within a session 
(time-in-session), both from trial-to-trial and across the session length, both before and after neural processes 
were influenced by training.

Key results of the present study showed: (1) Greater attention-related preparatory brain activity (prestimu-
lus Alpha and slow-wave CNV) and early visual sensory processing (N1) preceded fast compared to slow RTs, 
especially later within a session; (2) Improved efficiency of visual processing later in a session, for both fast and 
slow RTs (smaller N1 responses); (3) Enhanced attentional orientation (N2pc) to the target also preceded fast 
compared to slow RTs throughout each session, and (4) Further target-feature discrimination processing (SPCN) 
differed between fast versus slow RT trials before training, but not after.

First, prestimulus preparatory activity (as reflected in prestimulus negative slow-wave CNV activity and Alpha 
power) was predictive of response speed. More specifically, steeper negative slow-wave CNV slopes preceded 
faster RTs throughout the session and independent of training. Additionally, later within each session, higher 

Figure 6. The effects of session number (1 vs. 5), time-in-session (early vs. late) and speed (fast vs. slow) on 
the posterior N1. The effect of training and time-in-session on the posterior N1 followed distinct patterns (see 
text).
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amplitudes of prestimulus Alpha preceded slower RTs, an effect that was not influenced by training. The observed 
slow-wave CNV is most likely related to a steeper slope preceding faster RTs indicating better task-specific 
preparation33.

Figure 7. Attentional orienting towards and discrimination of the target in the visual search array. Rows 
depict the different sessions (1 and 5), and columns reflect where in each session the participant was (early and 
late). Evoked potentials were derived from subtracting the electrical activity for the electrodes contra- versus 
ipsilaeral relative to the target location. For the scalp topographies the left channels show the contra-minus-ipsi 
activity (C-I) while the right channels show the ipsi-minus-contra activity (I-C). Through both sessions, fast RTs 
were preceded by faster and better attentional orientation.

Figure 8. Differential effects for long and short RTs on the N2pc and SPCN between session 1 and session 
5. The N2pc was larger in amplitude during session 1 and larger in amplitude when followed by a faster versus 
a slower response. While, in general, the SPCN was larger in session 1 additionally, throughout session 1, the 
SPCN was also smaller if it was followed by a faster response compared to a slower one.
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With regard to prestimulus alpha, there has been relatively little research reporting a clear relationship 
between response speed and prestimulus Alpha power in visual search tasks (or in other tasks more generally). 
The finding that prestimulus Alpha inversely predicted RTs is in line with previous studies reporting that lower 
prestimulus Alpha amplitude correlated with subsequent target detection accuracy15,34. More generally, this find-
ing is accordance with lower alpha being associated with higher levels of general attention and alertness12,35, here 
manifesting as an enhanced ability to respond more quickly in performing the visual-search task in an upcoming 
search array. A possible interpretation for this findings is that Alpha gates the information flow in the visual 
stream11,36, and that the relative inhibition of visual regions (as reflected by larger amplitudes of Alpha) slows the 
ability to process the search-array items in visual cortex.

Similar to fluctuation in preparatory attention, fast versus slow RTs were also preceded by better visual pro-
cessing, as reflected by a larger posterior N1 sensory component evoked by the array. Additionally, when tak-
ing time-in-session into account, this relationship between behavioral response speed and the posterior N1 was 
greater late compared with early in a session. More specifically, we observed stronger RT effects on the visual N1 
particularly later within each session, with larger N1 amplitudes correlating with faster RTs, but to a lesser extent 
early within a session. Moreover, as with the preparatory Alpha RT effects, the N1-RT effects were larger later 
within the sessions but did not change after training. This suggests that time-in-session may influence both pre-
paratory attention related to general alertness and visual processing, with both leading to the subsequent effect on 
RTs. These time-in-session effects, which were quite robust, could in principle be attributed to a range of cognitive 
processes, such as learning, practice, or fatigue.

In contrast, the CNV-like slow negative wave-RT effects did not change across the session, which as suggested 
by previous studies13,16 further confirms that Alpha and CNV components most likely reflect different cogni-
tive processes. As mentioned above, fluctuations in preparatory attention can potentially be viewed as due to a 
combination of factors such as motivation, mental fatigue, and perhaps others. We found that the markers for 
preparatory attention, the slow-wave CNV and Alpha, did indeed covary with RT speed. However, whereas the 
covariation of alpha with RTs changed quite dramatically over time, the covariation between RT and CNV did 
not. One possibility might be that Alpha power reflects changes in general factors affecting task performance, 
such as fatigue, motivation, and overall alertness. The CNV, however, potentially comes from the fronto-parietal 
control network that has been implicated more in task-specific attention. Therefore, the CNV might reflect task 
specific modulations of attention, in which fluctuations would be a proxy for focusing selectively on the task (ver-
sus, for example, thinking about other matters, such as making a grocery list). To further elucidate these effects of 
time-in-session, we looked at which other neural processes changed as a function of time-in-session.

Another major result was that as a function of time-in-session, collapsed over slow and fast RTs, we observed 
increases in slow-wave CNV, increased preparatory Alpha power over session 1 and a smaller posterior N1 
over both session 1 and session 5. Additionally, prestimulus Alpha and the posterior N1 correlated inversely 
with one another, in line with what has previously been reported37,38. We propose several possible accounts for 
these time-in-session modulations of neural effects: (1) the decrease in the N1 might be related to some sort of 
neural-response adaptation over time; (2) it might be related to a change in strategy or mental fatigue in how the 
visual search array is processed over time, or (3) it might reflect a combination of these. There is previous evidence 
that neural adaptation effects can occur over time; more specifically, after repeated stimulation of the same neural 
populations, those populations get less and less sensitive, resulting in reduced responses39. These are not necessar-
ily permanent neural changes that we refer to as reflecting lasting learning effects, but are more related to repeated 
stimulation within a certain time interval. However, the changes observed here are not over a mere few seconds or 
even minutes but occur over a period of an hour (the length of a session). Accordingly, the adaptation explanation 
would not seem so likely, but it still could be a contributing factor for the observed effects.

The second possible account for the increase in alpha power and decrease in the visual N1 across a session, 
particularly perhaps for session 1, is that these effects could reflect a change in strategy as to how participants 
prepare for the upcoming visual search array, which then also results in fluctuations in the RTs. During a ses-
sion, participants may try to leverage the amount of information to be processed and the subsequent cognitive 
load40–42. If indeed they adopt a different strategy aimed at reducing the information load by more efficient atten-
tional preparation, this might result in faster overall RTs. In other words, by employing a more efficient focusing 
of attention towards features that are important for task performance, and additionally ignoring and inhibiting 
task-irrelevant features better, performance efficiency might increase.

Neurally the shift in strategy can be reflected by the prestimulus Alpha and slow-wave CNV effects on RTs, 
which can be related to a shift in strategy within a session to achieve a balance in the selection of information. 
More specifically, on the one hand, if information selection is too liberal, it would tend to result in a high cogni-
tive load, which can result in turn in a slow RT. On the other hand, information selection being too strict, and 
thus inhibiting important information, could also result in a slow RT. Hence, especially later within a session 
(when a more optimal strategy has been adopted), the balance between too much inhibition (= slow RT) and 
too little (= high cognitive load) may become apparent by a stronger correlation between prestimulus Alpha and 
RTs. In other words, by employing a more efficient focusing of attention towards features that are important for 
task performance, and additionally ignoring and inhibiting task irrelevant features better, performance efficiency 
might increase. These task-specific fluctuations in preparatory attention might be indexed by slow-wave CNV 
fluctuations, presumably originating from the fronto-parietal control network, that increased over the course of 
the experiment.

Additional evidence for this hypothesis comes from the observed modulations of the posterior N1; late within 
a session the posterior N1 was much decreased in size, and yet participants were able to respond faster as com-
pared to earlier in the session. If the N1 reflects the amount of cognitive effort exerted during the processing of 
a visual search array, then the N1 decrease would suggest that visual search was becoming more efficient over 
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the course of a session. Importantly, the stronger relationship between response speed and the N1 later within a 
session suggests that even though visual search has become more efficient there is a tradeoff between visual search 
efficiency and RTs. Part of improved efficiency can potentially be explained by a more efficient task-specific prepa-
ration. Additionally, however, fluctuations in alpha and the N1 might reflect more general changes in motivation, 
mental fatigue, or learning, which would be less task specific and seem to have a more pronounced influence on 
RTs later in the session.

Following attentional preparation and the visual processing of the search array, participants needed to direct 
their attention to the relevant target item to further process its features (here, to discriminate its orientation). On 
a neural level the larger negativity contralateral to the target side reflects the lateralized attentional allocation with 
high temporal resolution19. The amplitude and latency of the N2pc was closely related to RT-performance, being 
larger and earlier on trials with fast RTs. Interestingly, even though after training participants had significantly 
accelerated and enhanced the allocation of attention towards the target, there was still trial-to-trial variability in 
this process. Even though training can accelerate the allocation of attention on average, it cannot optimize the 
attentional orienting process to such an extent that it no longer has any variability. In other words, even after 
extensive training, there is still variation in the allocation of spatial attention from trial-to-trial, which then can 
ramify into faster or slower RTs, perhaps as a consequence of fluctuations in preparatory attention and visual 
processing.

Lastly, in untrained participants we found that fast RTs were preceded by a smaller SPCN compared to slow 
RTs. While the N2pc is a component associated with the orienting and focusing of attention on the target item, 
the SPCN is of larger amplitude when participants are asked to also discriminate a specific additional feature 
of the target item22. Accordingly, we infer that the SPCN effect observed in session 1 reflects that the further 
task-relevant feature analysis of the target (i.e. here, its orientation) was more efficient for fast compared to slow 
RTs. After training, however, the difference in SPCN size preceding slow and fast RTs disappeared. Thus, it might 
be that this automation reflects the improved maintenance of the memory trace for the target feature (its orien-
tation) necessary to select an appropriate motor response, similar to our interpretation of the shift in strategy 
with respect to the N1. Either way, the results supports the idea that the processes involved in identification 
and response to features of the target can be optimized to rely on less information while maintaining the same 
level of performance. In other words, training can rendering certain processes to become more automatic and 
effortless43,44.

Training revealed an increase in the visual N13, suggesting improved visual processing over sessions. In 
the present study we found that, within-session, for both slow and fast RTs the efficiency of visual processing 
improved. Participants required less visual processing (smaller N1) of the entire array for the same response 
time late as compared with early in the session. One interpretation would be that, on the one hand, improved 
visual processing by training does indeed help subsequently responding fast by recruiting more synchronized 
neural activity for visual search. On the other hand, however, over the course of the experiment, efficiency could 
improve, perhaps due to better, more specific preparatory slow-wave processes that benefit visual processing. If 
true, then a remaining question for future research is why the improved task-specific preparation, and with it 
efficiency of visual processing, were not transferred by the multi-day training.

In the present study, measures of electrical brain activity were used to provide neural indices for several key 
attention- and perception-related processes during a visual-search task. By examining how these brain activa-
tions covaried with RTs, our data help elucidate our understanding of variations in cognitive task performance in 
several ways. First, we identified that better preparatory attention and visual processing in visual search tasks – as 
marked by lower levels of prestimulus Alpha, steeper prestimulus slow-wave CNV slopes, and higher amplitudes 
of the visual processing related ERP components – lead to faster RTs. Importantly, these variations did not signif-
icantly differ as a function of training and were especially apparent later within a session. Additionally, allocation 
of attention towards the target item in the search array (reflected by the N2pc) also contributed to explaining RT 
variability throughout each session, independent of time-in-session and training. Finally, further discrimination 
and responding to task-relevant target features (reflected by the SPCN) seemed to be optimized by training and 
thus did not play much of a role in explaining RT variability after training. Together, these results provide new 
insight into how various neural processes during visual search are related on a trial-by-trial basis to task perfor-
mance, and how and which of these processes can be influenced by other key factors, such as previous training 
and the length of time spent in one continuous session performing a task.
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