16 research outputs found

    Scalable transactions in the cloud: partitioning revisited

    Get PDF
    Lecture Notes in Computer Science, 6427Cloud computing is becoming one of the most used paradigms to deploy highly available and scalable systems. These systems usually demand the management of huge amounts of data, which cannot be solved with traditional nor replicated database systems as we know them. Recent solutions store data in special key-value structures, in an approach that commonly lacks the consistency provided by transactional guarantees, as it is traded for high scalability and availability. In order to ensure consistent access to the information, the use of transactions is required. However, it is well-known that traditional replication protocols do not scale well for a cloud environment. Here we take a look at current proposals to deploy transactional systems in the cloud and we propose a new system aiming at being a step forward in achieving this goal. We proceed to focus on data partitioning and describe the key role it plays in achieving high scalability.This work has been partially supported by the Spanish Government under grant TIN2009-14460-C03-02 and by the Spanish MEC under grant BES-2007-17362 and by project ReD Resilient Database Clusters (PDTC/EIA-EIA/109044/2008)

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe

    Consultoría para identificación y elaboración del mapa de actores y relaciones de 3 cuencas

    No full text
    Consulting services for the identification of actors and studies on knowledge, attitudes and practices for the purpose of preparing a map of stakeholders and relationships between them in three selected basins

    Finding high-redshift strong lenses in DES using convolutional neural networks

    Get PDF
    International audienceWe search Dark Energy Survey (DES) Year 3 imaging data for galaxy–galaxy strong gravitational lenses using convolutional neural networks. We generate 250 000 simulated lenses at redshifts > 0.8 from which we create a data set for training the neural networks with realistic seeing, sky and shot noise. Using the simulations as a guide, we build a catalogue of 1.1 million DES sources with 1.8 19, g_mag > 20, and i_mag > 18.2. We train two ensembles of neural networks on training sets consisting of simulated lenses, simulated non-lenses, and real sources. We use the neural networks to score images of each of the sources in our catalogue with a value from 0 to 1, and select those with scores greater than a chosen threshold for visual inspection, resulting in a candidate set of 7301 galaxies. During visual inspection, we rate 84 as ‘probably’ or ‘definitely’ lenses. Four of these are previously known lenses or lens candidates. We inspect a further 9428 candidates with a different score threshold, and identify four new candidates. We present 84 new strong lens candidates, selected after a few hours of visual inspection by astronomers. This catalogue contains a comparable number of high-redshift lenses to that predicted by simulations. Based on simulations, we estimate our sample to contain most discoverable lenses in this imaging and at this redshift range

    The Mediterranean food pattern: a good recipe for patients with the metabolic syndrome

    No full text
    corecore