938 research outputs found

    Comments on black holes I: The possibility of complementarity

    Get PDF
    We comment on a recent paper of Almheiri, Marolf, Polchinski and Sully who argue against black hole complementarity based on the claim that an infalling observer 'burns' as he approaches the horizon. We show that in fact measurements made by an infalling observer outside the horizon are statistically identical for the cases of vacuum at the horizon and radiation emerging from a stretched horizon. This forces us to follow the dynamics all the way to the horizon, where we need to know the details of Planck scale physics. We note that in string theory the fuzzball structure of microstates does not give any place to 'continue through' this Planck regime. AMPS argue that interactions near the horizon preclude traditional complementarity. But the conjecture of 'fuzzball complementarity' works in the opposite way: the infalling quantum is absorbed by the fuzzball surface, and it is the resulting dynamics that is conjectured to admit a complementary description.Comment: 34 pages, 6 figures, v3: clarifications & references adde

    Intertwining Relations for the Deformed D1D5 CFT

    Full text link
    The Higgs branch of the D1D5 system flows in the infrared to a two-dimensional N=(4,4) SCFT. This system is believed to have an "orbifold point" in its moduli space where the SCFT is a free sigma model with target space the symmetric product of copies of four-tori; however, at the orbifold point gravity is strongly coupled and to reach the supergravity point one needs to turn on the four exactly marginal deformations corresponding to the blow-up modes of the orbifold SCFT. Recently, technology has been developed for studying these deformations and perturbing the D1D5 CFT off its orbifold point. We present a new method for computing the general effect of a single application of the deformation operators. The method takes the form of intertwining relations that map operators in the untwisted sector before application of the deformation operator to operators in the 2-twisted sector after the application of the deformation operator. This method is computationally more direct, and may be of theoretical interest. This line of inquiry should ultimately have relevance for black hole physics.Comment: latex, 23 pages, 3 figure

    Incidence and progression of diabetic retinopathy within a private diabetes mellitus clinic in South Africa

    Get PDF
    Objective: The study objective was to examine the influence of glycaemic control and ethnic variations on the incidence and progression of diabetic retinopathy (DR).Design, subjects and setting: Eight hundred and ninety-two persons with type 1 diabetes mellitus, and 1 998 persons with type 2 diabetes mellitus, who were enrolled in a private diabetes mellitus management programme in South Africa, participated in the study. Survival analyses were conducted to assess the relationship between the risk factors and the incidence of DR and referable DR, and the progression of DR.Outcome measures: Cumulative incidence of diabetic retinopathy and referable diabetic retinopathy.Results: The seven-year cumulative incidence of DR and referable DR was 536 and 50 cases per 1 000 persons with type 1 diabetes mellitus without DR at baseline, and 351 and 47 cases per 1 000 persons with type 2 diabetes mellitus. The seven-year cumulative incidence of referable DR was 332 cases per 1 000 persons with type 1 diabetes mellitus with background DR at baseline, and 360 cases with type 2 diabetes mellitus, representing a seven- and eightfold increase compared to no DR at baseline. After controlling for known risk factors for DR, a high baseline haemoglobin A1c (HbA1c) and non-Caucasian ethnicity were associated with the incidence of referable DR in patients with type 1 and type 2 diabetes mellitus.Conclusion: It was revealed in the first study to report on the incidence and progression of DR in South Africa that a high baseline HbA1c, ethnicity, and the presence of background DR increased the risk of the development of referable DR.Keywords: diabetes mellitus, diabetic retinopathy, epidemiology, incidence, risk factors, South Afric

    Excitations in the deformed D1D5 CFT

    Get PDF
    We perform some simple computations for the first order deformation of the D1D5 CFT off its orbifold point. It had been shown earlier that under this deformation the vacuum state changes to a squeezed state (with the further action of a supercharge). We now start with states containing one or two initial quanta and write down the corresponding states obtained under the action of deformation operator. The result is relevant to the evolution of an initial excitation in the CFT dual to the near extremal D1D5 black hole: when a left and a right moving excitation collide in the CFT, the deformation operator spreads their energy over a larger number of quanta, thus evolving the state towards the infrared.Comment: 26 pages, Latex, 4 figure

    Deforming the D1D5 CFT away from the orbifold point

    Get PDF
    The D1D5 brane bound state is believed to have an `orbifold point' in its moduli space which is the analogue of the free Yang Mills theory for the D3 brane bound state. The supergravity geometry generated by D1 and D5 branes is described by a different point in moduli space, and in moving towards this point we have to deform the CFT by a marginal operator: the `twist' which links together two copies of the CFT. In this paper we find the effect of this deformation operator on the simplest physical state of the CFT -- the Ramond vacuum. The twist deformation leads to a final state that is populated by pairs of excitations like those in a squeezed state. We find the coefficients characterizing the distribution of these particle pairs (for both bosons and fermions) and thus write this final state in closed form.Comment: 30 pages, 4 figures, Late

    Emission from the D1D5 CFT: Higher Twists

    Full text link
    We study a certain class of nonextremal D1D5 geometries and their ergoregion emission. Using a detailed CFT computation and the formalism developed in arXiv:0906.2015 [hep-th], we compute the full spectrum and rate of emission from the geometries and find exact agreement with the gravity answer. Previously, only part of the spectrum had been reproduced using a CFT description. We close with a discussion of the context and significance of the calculation.Comment: 39 pages, 6 figures, late

    Non-extremal Black Hole Microstates: Fuzzballs of Fire or Fuzzballs of Fuzz ?

    Full text link
    We construct the first family of microstate geometries of near-extremal black holes, by placing metastable supertubes inside certain scaling supersymmetric smooth microstate geometries. These fuzzballs differ from the classical black hole solution macroscopically at the horizon scale, and for certain probes the fluctuations between various fuzzballs will be visible as thermal noise far away from the horizon. We discuss whether these fuzzballs appear to infalling observers as fuzzballs of fuzz or as fuzzballs of fire. The existence of these solutions suggests that the singularity of non-extremal black holes is resolved all the way to the outer horizon and this "backwards in time" singularity resolution can shed light on the resolution of spacelike cosmological singularities.Comment: 34 pages, 10 figure

    The Nuts and Bolts of Einstein-Maxwell Solutions

    Get PDF
    We find new non-supersymmetric solutions of five-dimensional ungauged supergravity coupled to two vector multiplets. The solutions are regular, horizonless and have the same asymptotic charges as non-extremal charged black holes. An essential ingredient in our construction is a four-dimensional Euclidean base which is a solution to Einstein-Maxwell equations. We construct stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base. These solutions can be viewed as compactifications of eleven-dimensional supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure

    Distinct Patterns of Brain Metabolism in Patients at Risk of Sudden Unexpected Death in Epilepsy

    Get PDF
    Objective: To characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (18FDG-PET). Methods: We studied patients with refractory focal epilepsy at high (n = 56) and low (n = 69) risk of SUDEP who underwent interictal 18FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS). A whole brain analysis was employed to explore regional differences in interictal metabolic patterns. We contrasted these findings with regional brain metabolism more directly related to frequency of FBTCS. Results: Regions associated with cardiorespiratory and somatomotor regulation differed in interictal metabolism. In patients at relatively high risk of SUDEP, fluorodeoxyglucose (FDG) uptake was increased in the basal ganglia, ventral diencephalon, midbrain, pons, and deep cerebellar nuclei; uptake was decreased in the left planum temporale. These patterns were distinct from the effect of FBTCS frequency, where increasing frequency was associated with decreased uptake in bilateral medial superior frontal gyri, extending into the left dorsal anterior cingulate cortex. Significance: Regions critical to cardiorespiratory and somatomotor regulation and to recovery from vital challenges show altered interictal metabolic activity in patients with frequent FBTCS considered to be at relatively high-risk of SUDEP, and shed light on the processes that may predispose patients to SUDEP

    Long-term renal function in children with Wilms Tumour and constitutional WT1 pathogenic variant

    Get PDF
    BACKGROUND: Wilms tumour (WT) survivors, especially patients with associated syndromes or genitourinary anomalies due to constitutional WT1 pathogenic variant, have increased risk of kidney failure. We describe the long-term kidney function in children with WT and WT1 pathogenic variant to inform the surgical strategy and oncological management of such complex children. METHODS: Retrospective analysis of patients with WT and constitutional WT1 pathogenic variant treated at a single centre between 1993 and 2016, reviewing genotype, phenotype, tumour histology, laterality, treatment, patient survival, and kidney outcome. RESULTS: We identified 25 patients (60% male, median age at diagnosis 14 months, range 4–74 months) with WT1 deletion (4), missense (2), nonsense (8), frameshift (7), or splice site (4) pathogenic variant. Thirteen (52%) had bilateral disease, 3 (12%) had WT-aniridia, 1 had incomplete Denys-Drash syndrome, 11 (44%) had genitourinary malformation, and 10 (40%) had no phenotypic anomalies. Patient survival was 100% and 3 patients were in remission after relapse at median follow-up of 9 years. Seven patients (28%) commenced chronic dialysis of which 3 were after bilateral nephrectomies. The overall kidney survival for this cohort as mean time to start of dialysis was 13.38 years (95% CI: 10.3–16.4), where 7 patients experienced kidney failure at a median of 5.6 years. All of these 7 patients were subsequently transplanted. In addition, 2 patients have stage III and stage IV chronic kidney disease and 12 patients have albuminuria and/or treatment with ACE inhibitors. Four patients (3 frameshift; 1 WT1 deletion) had normal blood pressure and kidney function without proteinuria at follow-up from 1.5 to 12 years. CONCLUSIONS: Despite the known high risk of kidney disease in patients with WT and constitutional WT1 pathogenic variant, nearly two-thirds of patients had sustained native kidney function, suggesting that nephron-sparing surgery (NSS) should be attempted when possible without compromising oncological risk. Larger international studies are needed for accurate assessment of WT1genotype-kidney function phenotype correlation
    • …
    corecore