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1 Introduction

The D1D5 bound state provides a simple system to study the physics of black holes [1–57].

It is believed that at a particular value of couplings the CFT reaches an ‘orbifold point’

where it is a 1+1 dimensional sigma model with target space an orbifold space. The CFT at

the orbifold point is comparativey simple to analyze, and several agreements are observed

between the thermodynamic properties of this CFT and the physics of black holes. But

the physics of black holes does not correspond to the orbifold point, and we have to deform

away from this special point in the CFT moduli space to fully analyze all the aspects of

the gravitational physics [69–71].

In [58] the effect of the deformation operator was computed on the simplest state of

the CFT: the lowest spin Ramond vacuum of the ‘untwisted’ sector. It was found that

the resulting state could be written in closed form. The essential structure of this state

that of a squeezed state: we have an exponential of a bilinear in bosonic and fermionic

creation operators (schematically, eγ
Bα†α†+γF d†d†). The full state is given by the action of

a supercharge G on this squeezed state.

To understand the evolution of states in the deformed CFT we have to consider initial

states that have one or more initial excitations. Suppose a left and a right moving excitation

come near each other in the CFT. The deformation operator can take the energy and

momentum of this pair and distribute it over a different set of excitations. In particular

the exponential term eγ
Bα†α†+γF d†d† is always created by the deformation operator, and

we see that this can lead to an arbitrary number of excitations sharing the energy and

momentum of the initial colliding pair.

In this paper we will consider the action of the deformation operator on states that

contain bosonic and fermionic excitations in the initial state. The deformation operator Ô

is made by the action of a supercharge G− on a twist σ+
2 (shown in figure 1). We first work

out the effect of σ+
2 on an initial state containing a single boson or a single femion. We

then work out cases where two bosonic operators or two fermionic operators are present

in the initial state. Apart from the term where each initial mode becomes a set of modes

in the final state, we also get a contribution from a ‘Wick contraction’ between the two

modes in the initial state. Finally we take the case where a single boson is present in the

initial state, and work out the complete final state that results, now including the effect of

the supercharge G−. These computations illustrate a set of methods that can be used to

find the effect of the deformation operator on any initial state.

2 The D1D5 CFT at the orbifold point

In this section we summarize some properties of the D1D5 CFT at the orbifold point and

the deformation operator that we will use to perturb away from the orbifold point. For

more details, see [58].
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Figure 1. The effect of the twist contained in the deformation operator: two circles at earlier times

get joined into one circle after the insertion of the twist.

2.1 The CFT

Consider type IIB string theory, compactified as

M9,1 →M4,1 × S1 × T 4. (2.1)

Wrap N1 D1 branes on S1, and N5 D5 branes on S1×T 4. The bound state of these branes

is described by a field theory. We think of the S1 as being large compared to the T 4, so

that at low energies we look for excitations only in the direction S1. This low energy limit

gives a conformal field theory (CFT) on the circle S1.

We can vary the moduli of string theory (the string coupling g, the shape and size of

the torus, the values of flat connections for gauge fields etc.). These changes move us to

different points in the moduli space of the CFT. It has been conjectured that we can move

to a point called the ‘orbifold point’ where the CFT is particularly simple [59–68]. At this

orbifold point the CFT is a 1+1 dimensional sigma model. We will work in the Euclidized

theory, where the base space is a cylinder spanned by the coordinates

τ, σ : 0 ≤ σ < 2π, −∞ < τ <∞ (2.2)

The target space of the sigma model is the ‘symmetrized product’ of N1N5 copies of T 4,

(T4)
N1N5/SN1N5, (2.3)

with each copy of T 4 giving 4 bosonic excitations X1,X2,X3,X4. It also gives 4 fermionic

excitations, which we call ψ1, ψ2, ψ3, ψ4 for the left movers, and ψ̄1, ψ̄2, ψ̄3, ψ̄4 for the right

movers. The fermions can be antiperiodic or periodic around the σ circle. If they are

antiperiodic on the S1 we are in the Neveu-Schwarz (NS) sector, and if they are periodic
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on the S1 we are in the Ramond (R) sector. The central charge of the theory with fields

Xi, ψi, i = 1 . . . 4 is

c = 6 (2.4)

The total central charge of the entire system is thus 6N1N5.

2.2 Symmetries of the CFT

The D1D5 CFT has (4, 4) supersymmetry, which means that we have N = 4 supersym-

metry in both the left and right moving sectors. This leads to a superconformal N = 4

symmetry in both the left and right sectors, generated by operators Ln, G
±
r , J

a
n for the left

movers and L̄n, Ḡ
±
r , J̄

a
n for the right movers. The algebra generators and their OPEs and

commutators are given in appendix A.

Each N = 4 algebra has an internal R symmetry group SU(2), so there is a global

symmetry group SU(2)L × SU(2)R. We denote the quantum numbers in these two SU(2)

groups as

SU(2)L : (j,m); SU(2)R : (̄, m̄). (2.5)

In the geometrical setting of the CFT, this symmetry arises from the rotational symmetry

in the 4 space directions of M4,1 in Equation (2.1),

SO(4)E ≃ SU(2)L × SU(2)R. (2.6)

Here the subscript E stands for ‘external’, which denotes that these rotations are in the

noncompact directions. These quantum numbers therefore give the angular momentum of

quanta in the gravity description. We have another SO(4) symmetry in the four directions

of the T 4. This symmetry we call SO(4)I (where I stands for ‘internal’). This symmetry

is broken by the compactification of the torus, but at the orbifold point it still provides a

useful organizing principle. We write

SO(4)I ≃ SU(2)1 × SU(2)2. (2.7)

We use spinor indices α, α̇ for SU(2)L and SU(2)R respectively. We use spinor indices A, Ȧ

for SU(2)1 and SU(2)2 respectively.

The 4 real fermions of the left sector can be grouped into complex fermions ψαA. The

right fermions have indices ψ̄α̇Ȧ. The bosons Xi are a vector in the T 4. They have no

charge under SU(2)L or SU(2)R and are given by

[X]ȦA =
1√
2
Xi(σi)ȦA. (2.8)

where σi, i = 1, . . . 4 are the three Pauli matrices and the identity. (The notations described

here are explained in full detail in appendix A.)

2.3 States and operators

Since we orbifold by the symmetric group SN1N5 , we generate ‘twist sectors’, which can be

obtained by acting with ‘twist operators’ σn on an untwisted state. Each set of linked copies
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will be termed a ‘component string’. The simplest states of the CFT are in the ‘untwisted

sector’ where no copy of the c = 6 CFT is linked to any other copy; i.e. all component strings

have winding number unity. Consider one component string, and consider the theory de-

fined on the cylinder. The fermions on this string can be either periodic around the σ circle

of the cylinder (Ramond sector R) or antiperiodic (Neveu-Schwarz sector NS). Consider

one copy of the c = 6 CFT. The simplest state of this theory is the NS sector vacuum

|0〉NS : h = 0, m = 0 (2.9)

But the physical CFT arising from the D1D5 brane bound state is in the Ramond (R)

sector. We can relate the state (2.9) to a Ramond ground state using spectral flow [72].

Spectral flow maps amplitudes in the CFT to amplitudes in another CFT; under this map

dimensions and charges change as (we write only the left sector)

h′ = h+ αj +
cα2

24
, j′ = j +

cα

12
(2.10)

We have c = 6. Setting α = −1 gives

|0−R〉 : h =
1

4
, m = −1

2
(2.11)

which is one of the Ramond ground states of the c = 6 CFT for a component string with

winding number unity. Other Ramond ground states are obtained by acting with fermion

zero modes, so that we have four states in all

|0−R〉, ψ++
0 |0−R〉, ψ+−

0 |0−R〉, ψ++
0 ψ+−

0 |0−R〉 (2.12)

(with similar possibilities for the right moving sector).

The deformation operator involves the twist σ2. As we go around a point of insertion

of this twist, the fermions in the first copy change to fermions in the second copy, and after

another circle return to their original value. Creating such a twist automatically brings in

a ‘spin field’ at the insertion point, which has h = 1
2 , j = 1

2 [73, 74]. Thus there are two

possible insertions of such a twist, with m = 1
2 and with m = −1

2 . We write these as σ+
2

and σ−2 respectively. The operator σ+
2 is a chiral primary and σ−2 is an anti-chiral primary.

2.4 The deformation operator

The deformation operator is a singlet under SU(2)L×SU(2)R. To obtain such a singlet we

apply modes of G∓

Ȧ
to σ±2 . In [58] it was shown that we can write the deformation operator

as

ÔȦḂ(w0) =
[ 1

2πi

∫

w0

dwG−

Ȧ
(w)
][ 1

2πi

∫

w̄0

dw̄Ḡ−

Ḃ
(w̄)
]

σ++
2 (w0) (2.13)

The left and right movers separate out completely for all the computations that we will

perform. Thus from now on we will work with the left movers only; in particular the twist

operator will be written only with it left spin: σ+
2 .

The operator σ+
2 is normalzied to have a unit OPE with its conjugate

σ2,+(z′)σ+
2 (z) ∼ 1

(z′ − z)
(2.14)
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Figure 2. Before the twist insertion we have boson and fermion modes on two copies of the c = 6

CFT. These modes are labeled with superscripts (1), (2) respectively. The twist inserted at w0 joins

these to one copy for τ > τ0; the modes here do not carry a superscript. The branch cut above w0

indicates that we have two sets of fields at any given σ; these two sets go smoothly into each other

as we go around the cylinder, giving a continuous field on a doubly wound circle.

Acting on the Ramond vacuum this implies [58]

σ+
2 (w)|0−R〉(1) ⊗ |0−R〉(2) = |0−R〉 + . . . (2.15)

Here |0−R〉 is the spin down Ramond vacuum of the CFT on the doubly wound circle

produced after the twist. The normalization (2.15) has given us the coefficient unity for

the first term on the r.h.s. , and the ‘. . . ’ represent excited states of the CFT on the doubly

wound circle.

3 The effect of the deformation operator on the Ramond vacuum

In this section we summarize the results of [58] which computed the effect of the deformation

operator acts on a very simple state: the Ramond vacuum of the lowest spin state in the

untwisted sector Ramond sector.

We consider the amplitude depicted in figure 2.

In the initial state we have two copies of the c = 6 CFT, living on ‘single circles’ with

0 ≤ σ < 2π. We take the initial state

|ψ〉i = |0−R〉(1) ⊗ |0−R〉(2) (3.1)

We insert the operator ÔȦḂ at the point w0 on the cylinder. Thus the final state that

we want to find is given by

|ψ〉f = ÔȦ(w0)|ψ〉i =
[ 1

2πi

∫

w0

dwG−

Ȧ
(w)
]

σ+
2 (w0)|0−R〉(1) ⊗ |0−R〉(2) (3.2)

The final state will contain one component string with winding number 2, since the defor-

mation operator contains the twist σ+
2 .
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Figure 3. (a) The supercharge in the deformation operator is given by integrating G−

Ȧ
around the

insertion at w0. (b) We can stretch this contour as shown, so that we get a part above the insertion

and a part below, joined by vertical segments where the contributions cancel. (c) The part above

the insertion gives the zero mode of the supercharge on the doubly wound circle, while the parts

below give the sum of this zero mode for each of the two initial copies of the CFT.

3.1 Mode expansions on the cylinder

We expand the bosonic and fermionic field in modes on the cylinder. Below the twist

insertion (τ < τ0) we have

α
(i)

AȦ,n
=

1

2π

∫ 2π

σ=0
∂wX

(i)

AȦ
(w)enwdw, i = 1, 2 (3.3)

d(i)αA
n =

1

2πi

∫ 2π

σ=0
ψ(i)αA(w)enwdw, i = 1, 2 (3.4)

The commutation relations are

[α
(i)

AȦ,m
, α

(j)

BḂ,n
] = −ǫABǫȦḂδ

ijmδm+n,0 (3.5)

{d(i)αA
m , d(j)βB

n } = −ǫαβǫABδijδm+n,0 (3.6)

Above the twist insertion (τ > τ0) we have a doubly twisted circle. The modes are

αAȦ,n =
1

2π

∫ 4π

σ=0
∂wXAȦ(w)e

n
2
wdw (3.7)

dαA
n =

1

2πi

∫ 4π

σ=0
ψαA(w)e

n
2
wdw (3.8)

The commutation relations turn out to be

[αAȦ,m, αBḂ,n] = −ǫABǫȦḂmδm+n,0 (3.9)

{dαA
m , dβB

n } = −2ǫαβǫABδm+n,0 (3.10)

3.2 The supercharge

Let us first put the 1
2πi

∫

w0
dwG−

Ȧ
(w) operator in (3.2) in a more convenient form. The

contour in this operator runs circles the insertion w0 (figure 3(a)). We can stretch this to

a contour that runs around the rectangle shown in figure 3(b). The vertical sides of the

– 7 –
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contour cancel out. We can thus break the contour into a part above the insertion and a

part below the insertion (figure 3(c)). The lower leg gives

− 1

2πi

∫ τ0−ǫ+2πi

w=τ0−ǫ

G−

Ȧ
(w) = − 1

2πi

∫ τ0−ǫ+2πi

w=τ0−ǫ

[G
(1)−

Ȧ
(w) +G

(2)−

Ȧ
(w)]dw ≡ −

(

G
(1)−

Ȧ,0
+G

(2)−

Ȧ,0

)

(3.11)

The upper leg gives
1

2πi

∫ τ0+ǫ+4πi

w=τ0+ǫ

G−

Ȧ
(w)dw ≡ G−

Ȧ,0
(3.12)

where we note that the two copies of the CFT have linked into one copy on a doubly wound

circle, and we just get the zero mode of G−

Ȧ
on this single copy.

Note that

G
(i)−

Ȧ,0
|0−−

R 〉(i) = 0, i = 1, 2 (3.13)

since the α index of |0α−
R 〉(i) forms a doublet under SU(2)L, and we cannot further lower

the spin of |0−−
R 〉(i) without increasing the energy level. Thus when the initial state (3.1),

the lower contour gives nothing, and we have

|ψ〉 = G−

Ȧ,0
σ+

2 (w0)|0−R〉(1) ⊗ |0−R〉(2) (3.14)

Let us write this as

|ψ〉 = G−

Ȧ,0
|χ〉 (3.15)

where

|χ〉 = σ+
2 (w0)|0−R〉(1) ⊗ |0−R〉(2) (3.16)

3.3 Steps in finding |χ〉
We start from the original problem, which is in the Ramond sector on the cylinder, and

make a sequence of spectral flows and coordinate changes to map it to a simpler form. (For

more details, see [58].)

(a) First we perform a spectral flow (2.10) with parameter α = 1. This brings the two

copies of the c = 6 CFT in the initial state to the NS sector.

(b) We wish to go to a covering space which will allow us to see explicitly the action

of the twist operator. First map the cylinder with coordinate w to the plane with

coordinate z

z = ew (3.17)

We then pass to the cover of the z plane via the map

z = z0 + t2; z0 = ew0 ≡ a2 (3.18)

Since step (a) mapped the states at τ → −∞ to the NS vacuum, we have just the NS

vacuum at the corresponding punctures t = ±ia in the t plane, and we can smoothly

close these punctures. The location of the twist insertion σ+
2 maps to t = 0. At

this location we have the state |0+
R〉t, the spin up Ramond vacuum of the t plane

(figure 4).
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Figure 4. The z plane is mapped to the covering space — the t plane — by the map z = z0 + t2.

The point z = 0 corresponds to τ → −∞ on the cylinder, and the two copies of the CFT there

correspond to the points t = ±ia. The location of the twist operator maps to t = 0. The top the

cylinder τ → ∞ maps to t → ∞. After all maps and spectral flows, we have the NS vacuum at

t = 0,±ia, and so we can smoothly close all these punctures. The state |χ〉 is thus just the t plane

vacuum; we must write this in terms of the original cylinder modes and apply the supercharge to

get the final state |ψ〉.

(c) We perform a spectral flow with α = −1 in the t plane. The Ramond ground state

at t = 0 maps to the NS vacuum in the t plane

|0+
R〉t → |0〉t (3.19)

We can now smoothly close the puncture at t = 0 as well.

Thus we see that under this set of maps the state (3.1) just generates a state which

is the t plane vacuum at large t: the punctures at t = ±ia and at t = 0 have all been

smoothly closed with no insertions. Since t large corresponds to τ → ∞ we see that the

state |χ〉 in the present description is just the t plane vacuum. But though we have now

found the state created by the action of σ+
2 , we still need to express this state in terms of

the modes appropriate to the original problem; i.e., the modes on the cylinder before any

spectral flows or coordinate changes.

– 9 –



J
H
E
P
0
6
(
2
0
1
0
)
0
3
2

Thus we need to know how the modes on the cylinder given in section 3.1 change under

the transformations (a)-(c). Before the twist we find

α
(1)

AȦ,n
→ 1

2π

∫

t=ia

∂tXAȦ
(t)(z0 + t2)ndt (3.20)

α
(2)

AȦ,n
→ 1

2π

∫

t=−ia

∂tXAȦ(t)(z0 + t2)ndt (3.21)

d(1)+A
n → 2

1
2

2πi

∫

t=ia

ψ+A(t)(z0 + t2)n−1tdt (3.22)

d(2)+A
n → 2

1
2

2πi

∫

t=−ia

ψ+A(t)(z0 + t2)n−1tdt (3.23)

d(1)−A
n → 2

1
2

2πi

∫

t=ia

ψ−A(t)(z0 + t2)ndt (3.24)

d(2)−A
n → 2

1
2

2πi

∫

t=−ia

ψ−A(t)(z0 + t2)ndt (3.25)

After the twist we get

αAȦ,n → 1

2π

∫

t=∞

∂tXAȦ(t)(z0 + t2)
n
2 dt (3.26)

d+A
n → 2

1
2

2πi

∫

t=∞

ψ+A(t)(z0 + t2)
(n−2)

2 tdt (3.27)

d−A
n → 2

1
2

2πi

∫

t=∞

ψ−A(t)(z0 + t2)
n
2 dt (3.28)

3.4 The final state

Expressing the t plane vacuum in terms of the cylinder modes of the original problem, we

find [58]

|χ〉 = e

∑

m≥1,n≥1 γ
B
mn[−α++,−mα−−,−n + α−+,−mα+−,−n]

×e
∑

m≥0,n≥1 γ
F
mn[d++

−md
−−
−n − d+−

−md
−+
−n ]|0−R〉 (3.29)

where

γB
2m′+1,2n′+1 =

2

(2m′ + 1)(2n′ + 1)

z
(1+m′+n′)
0 Γ[32 +m′]Γ[32 + n′]

(1 +m′ + n′)πΓ[m′ + 1]Γ[n′ + 1]
(3.30)

γF
2m′+1,2n′+1 = − z

(1+m′+n′)
0 Γ[32 +m′]Γ[32 + n′]

(2n′ + 1)π(1 +m′ + n′)γ[m′ + 1]Γ[n′ + 1]
(3.31)

Finally we must apply the supercharge on |χ〉 to obtain |ψ〉. We have

G−

Ȧ,0
=

1

2πi

∫ w=τ+4πi

w=τ

G−

Ȧ
(w)dw = − i

2

∞
∑

n=−∞

d−A
n αAȦ,−n (3.32)
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and find

|ψ〉 = G−

Ȧ,0
|χ〉

= −i
(

∑

n′≥0

2
1
2 z

n′+ 1
2

0 Γ[32 +n′]

π
1
2 (2n′+1)Γ[n′+1]

d−A
−(2n′+1)

)(

∑

m′≥0

2
1
2 z

m′+ 1
2

0 Γ[32 +m′]

π
1
2 (2m′+1)Γ[m′+1]

αAȦ,−(2m′+1)

)

e

∑

p′≥0,q′≥0 γ
B
2p′+1,2q′+1[−α++,−(2p′+1)α−−,−(2q′+1) + α−+,−(2p′+1)α+−,−(2q′+1)]

e

∑

p′′≥0,q′′≥0 γ
F
2p′′+1,2q′′+1[d

++
−(2p′′+1)d

−−
−(2q′′+1) − d+−

−(2p′′+1)d
−+
−(2q′′+1)] |0−R〉 (3.33)

A similar expression is obtained for |ψ̄〉 = −Ḡ−

Ḃ,0
|χ̄〉, and we thus find the complete state

resulting from the action of the deformation operator on the spin down Ramond vacuum.

4 Outline of the computations

We now wish to consider the situation where we have an excitation in the initial state on

the cylinder. These excitations are generated by operators αAȦ,n, d
αA
n . Here we must have

n ≤ −1 for bosonic excitations, since there is no momentum and so the zero mode αAȦ,0

kills the vacuum. For the fermions, we have n ≤ 0 for d+A
n and n < 0 for d−A

n since we

cannot apply the zero mode d−A
0 to the vacuum |0−−

R 〉(1) ⊗ |0−−
R 〉(2) that we have taken as

the starting point before we apply the excitation modes.

Let us note the steps we will have to perform in general:

(i) In section 3.2 we decomposed the action of the supercharge into an application of

−(G
(1)−

Ȧ,0
+G

(2)−

Ȧ,0
) below the twist and an application of G−

Ȧ,0
above the twist. Let us

first consider the part below the twist. We commute these supercharge modes down

through any excitations αAȦ,n, d
αA
n present in the initial state. After a supercharge

zero mode passes all these modes it will reach the state |0−−
R 〉(1) ⊗ |0−−

R 〉(2) at the

bottom of the cylinder, and by (3.13) we will get zero. The commutation through

the excitations can be computed by the relations

G
(1)−

Ȧ,0
= −i

∞
∑

n=−∞

d
(1)−A
−n α

(1)

AȦ,n
(4.1)

[

G
(1)−

Ȧ,0
, α

(1)

BḂ,m

]

= −imǫABǫȦḂd
(1)−A
m (4.2)

{G(1)−

Ȧ,0
, d(1)−B

m } = 0 (4.3)

{G(1)−

Ȧ,0
, d(1)+B

m } = iǫABα
(1)

AȦ,m
(4.4)

We have exactly similar relations for the operators in copy 2.

(ii) Having disposed of any supercharge present below the twist, we get the twist operator

σ+
2 acting on a set of bosonic and fermionic modes. In the sections below we will

take the case where we have a single bosonic or fermionic mode below the twist σ+
2 ,

and will find that this can be expressed as a linear combination of single particle

modes acting after the twist. If we have several modes below the twist, then we can
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perform the same process with each mode, except that there can be in addition a

‘Wick contraction’ between a pair of bosonic or fermionic modes. This results in a

c-number contribution, which we compute as well.

(iii) In this manner we obtain a state where we have σ+
2 acting on the spin down Ramond

vacuum, and a set of excitations acting after this twist. The action of σ+
2 on the

Ramond vacuum gives the state |χ〉 (defined in (3.16)); this state was found in [58]

and is given in (3.29). Thus we get a set of modes acting on |χ〉. Finally we note that

we have a part of the amplitude where we must act with the supercharge mode (3.12)

applied after all other operators. This is done using the relations

G−

Ȧ,0
= − i

2

∞
∑

n=−∞

d−A
n αAȦ,−n (4.5)

[

G−

Ȧ,0
, α

BḂ,m

]

= −1

2
imǫABǫȦḂd

−A
m (4.6)

{G−

Ȧ,0
, d−B

m } = 0 (4.7)

{G−

Ȧ,0
, d+B

m } = iǫABα
AȦ,m

(4.8)

We can use these relations to commute the supercharge down through the modes

now present above σ+
2 , until it reaches the twist insertion. The supercharge applied

to the twist, with the Ramond vacuum below the twist, results in the state |ψ〉 given

in (3.33) [58]. Thus we end up with a set of modes on the doubly wound circle, acting

on |χ〉, |ψ〉.
In this manner we compute the full state resulting from the action of the deformation

operator on a general initial state containing excitations.

5 The action of σ
+

2 on a single mode

In this section we perform the following computation: we have a single excitation in the

initial state, and the action of σ+
2 on this state. The created state will have the same

exponential as in the state |χ〉 created by σ+
2 from the vacuum, but in addition the initial

excitation will split into a linear combination of single particle modes in the final state.

5.1 The action of σ+
2 (w0) on a bosonic mode

Let us find the state

|ξ〉 = σ+
2 (w0)α

(1)

AȦ,n
|0−−

R 〉(1) ⊗ |0−−
R 〉(2) (5.1)

Since the vacuum state |0−−
R 〉(1) ⊗|0−−

R 〉(2) is killed by nonnegative modes of the boson, we

will take

n ≤ −1 (5.2)

We perform the spectral flows and coordinate maps given in section (3.3). This brings

us to the t plane with all punctures at t = ±ia, t = 0, smoothly closed. Before these steps,
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the mode α
(1)

AȦ,n
is given in (3.3), and after all the spectral flow and coordinate maps, it is

given in the t plane by (3.20)

α
(1)

AȦ,n
→ 1

2π

∫

t=ia

∂tXAȦ(t)(z0 + t2)ndt (5.3)

We will now go through a sequence of steps to find the effect of this mode in the final state.

The essence of these steps in the following. The initial state modes (5.3) are defined by a

contour around the point t = ia. The final state modes (3.26) are defined at large t. They

involve the function (z0+t
2)

n
2 which has branch points in the t plane for odd n, so we cannot

directly stretch the contour giving the initial state modes to get the modes in the final state.

Instead, we proceed from the initial modes to the final modes through a sequence of steps

that expands the initial contour into a linear combination of modes at large t.

5.1.1 The operators α̂AȦ,n)

The contour in (5.3) circles the point t = ia. As we saw in section (3.3), there is no

singularity at t = ia after all spectral flows and coordinate maps have been done. Thus if

we define modes

α̂
(1)

AȦ,n
=

1

2π

∫

t=ia

dt∂tXAȦ(t)(t− ia)n (5.4)

then we will find

α̂AȦ,n|0〉ia = 0, n ≥ 0 (5.5)

where |0〉ia is the NS vacuum at the point t = ia, and we have noted that the zero mode

vanishes since there is no momentum for the boson at any stage. The modes (5.4) have

the commutation relations

[α̂AȦ,m, α̂BḂ,n] = −ǫABǫȦḂmδm+n,0 (5.6)

Thus we would like to expand the mode (5.3) in modes of type (5.4). Writing

z0 + t2 = (t− ia)(t+ ia) (5.7)

we write the mode (5.3) as

α
(1)

AȦ,n
→ 1

2π

∫

t=ia

∂tXAȦ(t)(t− ia)n(t+ ia)ndt (5.8)

We have

(t+ ia)n =
(

2ia+ (t− ia)
)n

= (2ia)n
(

1 + (2ia)−1(t− ia)
)n

=
∑

k≥0

nCk(2ia)
(n−k)(t− ia)k (5.9)

We thus find

α
(1)

AȦ,n
→
∑

k≥0

nCk(2ia)
(n−k) 1

2π

∫

ia

dt∂tXAȦ(t)(t− ia)(n+k) =
∑

k≥0

nCk(2ia)
(n−k)α̂

(1)
n+k (5.10)
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From (3.23) we find that we will get a nonzero contribution only from modes with

n+ k ≤ −1 ⇒ k ≤ −n− 1 (5.11)

(Recall from (5.2) that n is negative.) Thus we have

α
(1)

AȦ,n
→

−n−1
∑

k=0

nCk(2ia)
(n−k)α̂

(1)
n+k (5.12)

Note that this is a finite sum; this is important to have convergence for sums that we will

encounter below.

5.1.2 Converting to modes α̃AȦ,q

The contour in the operators α̂AȦ,n circles t = ia. But as we have seen in section (3.3),

there are no singularities at other points in the t plane, so we can stretch this contour into

a contour at large t, which we write as
∫

t=∞
. We get

α̂
(1)

AȦ,m
→ 1

2π

∫

t=∞

dt∂tXAȦ(t)(t− ia)m (5.13)

(t− ia)m = tm
(

1 − (ia)t−1
)m

=
∑

k′≥0

mCk′(−ia)k′

tm−k′

(5.14)

Let us now define modes natural to large t in the t plane:

α̃AȦ,m ≡ 1

2π

∫

t=∞

∂tXAȦ(t)tmdt (5.15)

We have

[α̃AȦ, α̃BḂ ] = −ǫABǫȦḂmδm+n,0; α̃AȦ,m|0〉t = 0, m ≥ 0 (5.16)

We find

α̂AȦ,m =
∑

k′≥0

mCk′(−ia)k′

α̃AȦ,m−k′ (5.17)

Let us now substitute this expansion for α̂AȦ,m into (5.12). We get

α
(1)

AȦ,n
→

−n−1
∑

k=0

nCk(2ia)
(n−k)

∑

k′≥0

(n+k)Ck′(−ia)k′

α̃AȦ,n+k−k′ (5.18)

Let us look at the coefficient of α̃AȦ,q. Thus

q = n+ k − k′ ⇒ k′ = n+ k − q (5.19)

Since we have k′ ≥ 0, we find

n+ k − q ≥ 0 ⇒ k ≥ q − n (5.20)

Thus the k sum runs over the following range

q − n ≤ 0 : k = [0,−n− 1]

q − n ≥ 0 : k = [q − n,−n− 1] (5.21)
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Recall that n ≤ −1. The second of these equations tells us that there is no summation range

at all for q ≥ 0. Thus we only generate negative index modes α̃AȦ,q from our expansion:

q ≤ −1 (5.22)

We now have

α
(1)

AȦ,n
→

∑

q≤−1

(

−n−1
∑

k=0

nCk(2ia)
(n−k) (n+k)Cn+k−q(−ia)n+k−q

)

α̃AȦ,q, q ≤ n

α
(1)

AȦ,n
→

∑

q≤−1

(

−n−1
∑

k=q−n

nCk(2ia)
(n−k) (n+k)Cn+k−q(−ia)n+k−q

)

α̃AȦ,q, q ≥ n (5.23)

The sum has the same algebraic expression in both the ranges for q, and we find

α
(1)

AȦ,n
→
∑

q≤−1

(

i−q(−1)na2n−qΓ[− q
2 ]

2Γ[−n]Γ[n+ 1 − q
2 ]

)

α̃AȦ,q (5.24)

5.1.3 Converting to modes α
AȦ,p

We must finally convert to the modes on the cylinder at τ → ∞. These modes are given

in (3.26)

αAȦ,p → 1

2π

∫

t=∞

dt∂tXAȦ(t)(z0 + t2)
p

2 (5.25)

Write

t′ = (t2 + z0)
1
2 ⇒ t = (t′2 − z0)

1
2 (5.26)

with the sign of the square root chosen to give t′ ∼ t near infinity. Then we have

tq = (t′2 − z0)
q

2 = t′q
(

1 − z0t
′−2
)

q

2
=
∑

k≥0

q

2Ck(−z0)kt′q−2k =
∑

k≥0

q

2Ck(−z0)k(z0 + t2)
q−2k

2

(5.27)

Substituting this expansion in (5.15) we find that

α̃AȦ,q =
1

2π

∫

dt∂tXAȦ(t)

(

∑

k≥0

q

2Ck(−z0)k(z0 + t2)
q−2k

2

)

(5.28)

Using (5.25) we find

α̃AȦ,q =
∑

k≥0

q

2Ck(−z0)kαAȦ,q−2k (5.29)

We substitute the expansion (5.29) into (5.24), getting

α
(1)

AȦ,n
→
∑

q≤−1

(

i−q(−1)na2n−qΓ[− q
2 ]

2Γ[−n]Γ[n+ 1 − q
2 ]

)

∑

k≥0

q

2Ck(−z0)kαAȦ,q−2k (5.30)

Let us look at the coefficient of αAȦ,p in this sum. This gives

p = q − 2k (5.31)
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Note that since q ≤ −1 and k ≥ 0, we have

p ≤ −1 (5.32)

From (5.31) we see that if p is even only even values of q contribute to this sum, and if p

is odd then only odd values of q contribute. For the even p case we write p = 2p′, q = 2q′.

From (5.31) we set k = q′ − p′. Since k ≥ 0, the range of the q′ sum becomes p′ ≤ q′ ≤ −1.

We get the sum

−1
∑

q′=p′

(−1)q
′+na2n−2q′Γ[−q′]

2Γ[−n]Γ[n+1−q′]
q′Cq′−p′(−z0)q

′−p′ =
1

2
δn,p′ (5.33)

For odd p we write p = 2p′ + 1, q = 2q′ + 1. From (5.31) we again get k = q′ − p′. Since

k ≥ 0, the range of q′ is p′ ≤ q′ ≤ −1. We get the sum

−1
∑

q′=p′

i−1(−1)q
′+na2n−2q′−1Γ[−q′− 1

2 ]

2Γ[−n]Γ[n+ 1
2−q′]

q′+ 1
2Cq′−p′(−z0)q

′−p′

=
i

π

Γ[12−n]

Γ[−n]

Γ[−1
2−p′]

Γ[−p′]
a2(n−p′)−1

(2n−2p′−1)
(5.34)

5.1.4 Summary

Now that we have converted the initial mode α
(1)

AȦ,n
to modes at large t, we note that we

are left with the NS vacuum |0〉t of the t plane inside these modes. This vacuum just gave

us the state |χ〉 on the cylinder [58]

σ+
2 (w0)|0−−

R 〉(1) ⊗ |0−−
R 〉(2) = |χ〉 (5.35)

Putting the above results together, we see that for n < 0

σ+
2 (w0)α

(1)

AȦ,n
|0−−

R 〉(1) ⊗ |0−−
R 〉(2)

=

(

1

2
αAȦ,2n +

∑

p′≤−1

(

i

π

Γ[12 − n]

Γ[−n]

Γ[−1
2 − p′]

Γ[−p′]
a2(n−p′)−1

(2n − 2p′ − 1)

)

αAȦ,2p′+1

)

|χ〉

≡
∑

p

fB[n, p]αAȦ,p|χ〉 (5.36)

where we have defined the coefficients fB[n, p] for later convenience. For n ≥ 0 we will

just have

σ+
2 (w0)α

(1)

AȦ,n
|0−−

R 〉(1) ⊗ |0−−
R 〉(2) = 0 (5.37)

since positive modes annihilate the Ramond vacuum state.

We see that the even modes in the final state get a simple contribution; this is related

to the fact that the twist operator σ2 does not affect such modes when it cuts and joins

together the two copies of the c = 6 CFT. The odd modes of all levels are excited.
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5.2 The action of σ+
2 (w0) on a fermionic mode

Let us repeat the above computation for a fermionic mode in the initial state. There

is a slight difference between the cases of d−A
n and d+A

n since the starting vacuum state

|0−−
R 〉(1) ⊗ |0−−

R 〉(2) breaks the charge symmetry, and the spectral flows we do also break

this symmetry.

5.2.1 The mode d−A
n in the initial state

We start with eq. (3.24), which we write as

d(1)−A
n → 2

1
2

2πi

∫

ia

dt ψ−A
t (t)(t− ia)n(t+ ia)n (5.38)

We perform the spectral flows and coordinate maps in section (3.3) to reach the t plane

with all punctures smoothly closed. Define natural modes around the point t = ia in the

t plane

d̂−A
r =

1

2πi

∫

ia

dt ψ−A
t (t)(t− ia)r−

1
2 (5.39)

where r is a half-integer. Writing t+ ia = 2ia+ (t− ia), we expand in powers of (t− ia).

Noting that operators d̂−A
r with r > 0 kill the NS vacuum at t = ia, we find

d(1)−A
n → 2

1
2

−n−1
∑

k=0

nCk (2ia)n−k d̂−A

n+k+ 1
2

(5.40)

The r.h.s. in the above equation is a finite sum of operators, each given by a contour

integral around t = ia. Since there are no singularities anywhere on the t plane, we can

expand each contour to one at large t. We define operators natural for expansion around

infinity in the t plane

d̃−A
r =

1

2πi

∫

t=∞

dt ψ−A
t (t) tr−

1
2 (5.41)

where r is a half-integer. The commutation relations are

{d̃αA
r , d̃βB

s } = −ǫαβǫABδr+s,0 (5.42)

We find

d̂−A
r =

∑

k′≥0

r− 1
2Ck′ (−ia)k′

d̃−A
r−k′ (5.43)

Finally we can expand the operators d̃−A
r in terms of the final state modes (3.28),

finding

d̃−A
r = 2−

1
2

∑

k≥0

r−1
2

2 Ck (−a2)k d−A

r−2k− 1
2

(5.44)

We then find

σ+
2 (w0)d

(1)−A
n |0−−

R 〉(1) ⊗ |0−−
R 〉(2)

=

(

1

2
d−A
2n +

∑

p′≤−1

(

i

π

Γ[12 − n]

Γ[−n]

Γ[−1
2 − p′]

Γ[−p′]
a2(n−p′)−1

(2n − 2p′ − 1)

)

d−A
2p′+1

)

|χ〉

≡
∑

p

fF−[n, p]d−A
p |χ〉 (5.45)
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5.2.2 The mode d+A
n in the initial state

We start with (3.22), which we write as

d(1)+A
n → 2

1
2

2πi

∫

ia

dt ψ+A
t (t)(t− ia)n−1(t+ ia)n−1 t (5.46)

We perform the steps in section (3.3) as before. The natural modes around t = ia are

d̂+A
r =

1

2πi

∫

ia

dt ψ+A
t (t)(t− ia)r−

1
2 (5.47)

This time we must expand in (5.46) the factor t+ ia = 2ia+ (t− ia) as well as the factor

t = ia+ (t− ia). Thus generates two terms

d(1)+A
n → 1

2
1
2

−n
∑

k=0

n−1Ck(2ia)
n−k d̂+A

n+k− 1
2

+ 2
1
2

−n−1
∑

k=0

n−1Ck(2ia)
n−k−1d̂+A

n+k+ 1
2

(5.48)

Define natural modes at large t

d̃+A
r =

1

2πi

∫

t=∞

dt ψ+A
t (t) tr−

1
2 (5.49)

We find

d̂+A
r =

∑

k≥0

r− 1
2Ck(−ia)kd̃+A

r−k (5.50)

Finally we can expand the modes d̃+A in terms of the final state modes (3.27), finding

d̃+A
r = 2−

1
2

∑

k≥0

r−3
2

2 Ck (−a2)k d+A

r−2k+ 1
2

(5.51)

Putting all these expansions together, we find

σ+
2 (w0)d

(1)+A
n |0−−

R 〉(1) ⊗ |0−−
R 〉(2)

=

(

1

2
d+A
2n +

∑

p′≤−1

(

i

π

Γ[12 − n]

Γ[1 − n]

Γ[12 − p′]

Γ[−p′]
a2(n−p′)−1

(2n− 2p′ − 1)

)

d+A
2p′+1

)

|χ〉

≡
∑

p

fF+[n, p]d+A
p |χ〉 (5.52)

5.3 Summary

The computations of this section are are very basic to understanding the effect of the

deformation operator: taken by itself, any single particle mode below the twist insertion

σ+
2 (w0) spreads into a linear combination of single particle modes after the twist, and

we have found the coefficients of this linear combination for both bosonic and fermionic

excitations. In addition the twist creates the same exponential that arises in the action of

the twist of the vacuum (eq. (3.29), so the action of the twist on a single particle initial

state gives rise to states with 1, 3, 5, . . . excitations.
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6 Two modes in the initial state

Now let us consider the situation where we have two excitations in the initial twist. Upon

the action of the twist σ+
2 there will be two kinds of terms. One, where the modes move

separately to the final state; this contribution can thus be computed by using the expres-

sions of the last section. The other contribution results from an interaction between the two

modes. Since we are dealing with a theory of free bosons and free fermions, the only possible

interactions between modes is a ‘Wick contraction’, which produces a c-number term.

6.1 Two bosonic modes

Let us consider the state

σ+
2 (w0)α

(1)

AȦ,n1
α

(1)

BḂ,n2
|0−−

R 〉(1) ⊗ |0−−
R 〉(2) (6.1)

with n1 < 0, n2 < 0. We wish to move the modes α
(1)

AȦ,ni
to operator modes acting after

the σ+
2 operator. We will get the terms corresponding to each of these modes moving

across separately, but there will also be a term resulting from the interaction between the

two modes.

We follow the sequence of spectral flows and dualities given in section (3.3). We reach

the t plane with all punctures closed and the operator modes (cf. eq. (3.20))

α
(1)

AȦ,n1
α

(1)

BḂ,n2
→
( 1

2π

∫

t=ia

∂tXAȦ(t1)(z0 + t21)
n1dt1

)( 1

2π

∫

t=ia

∂tXBḂ(t2)(z0 + t22)
n2dt2

)

(6.2)

with the t1 contour outside the t2 contour.

There is no singularity inside the t2 contour, so we can expand the t2 contour as in

section (5.1.1) to get (cf. eq. (5.12))

α
(1)

BḂ,n2
→

−n2−1
∑

k2=0

n2Ck2(2ia)
(n2−k2)α̂

(1)

BḂ,n2+k2
(6.3)

For the t1 contour we can get a contribution from both positive and negative α̂ modes,

since the t2 contour gives an operator inside the t1 contour. Thus we write the general

expansion (5.10) for this contour

α
(1)

AȦ,n1
→

∞
∑

k1=0

n1Ck1(2ia)
(n1−k1) α̂

(1)

AȦ,n1+k1
(6.4)

and consider separately two cases:

(a) The range of k1 where n1 + k1 ≤ −1. This gives negative index modes just like (6.3).

These modes commute with the modes in (6.3), so we have no interaction between

the two operators, and we get (cf. (5.12))

α
(1)

AȦ,n1
→

−n1−1
∑

k1=0

n1Ck1(2ia)
(n1−k1) α̂

(1)

AȦ,n1+k1
(6.5)
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(b) The range where n1 + k1 ≥ 0. Now these modes can annihilate the negative modes

created by the t2 contour. This results in a c-number contribution

CB
AȦBḂ

[n1, n2] =
∞
∑

k1=−n1

−n2−1
∑

k2=0

n1Ck1(2ia)
(n1−k1) n2Ck2(2ia)

(n2−k2)

×
[

α̂
(1)

AȦ,n1+k1
, α̂

(1)

BḂ,n2+k2

]

(6.6)

Using the commutation relation (5.6) we get

CB
AȦBḂ

[n1, n2] = (−ǫABǫȦḂ)

(

−n2−1
∑

k2=0

(−(n2+k2))
n1C−n1−n2−k2

n2Ck2 (2ia)2(n1+n2)

)

= ǫABǫȦḂ

(

a2(n1+n2)Γ[−n1 + 1
2 ]Γ[−n2 + 1

2 ]

2π(n1 + n2)Γ[−n1]Γ[−n2]

)

(6.7)

Note that this is symmetric in n1 and n2, as it should be since the modes in (6.1)

commute and so can be put in either order.

Apart from this c-number term, we still have the contribution where the two contours

in the initial state produce the modes (6.3), (6.5). We can proceed to expand the modes α̂

in these sums into modes of type α̃. We note from (5.22) that each set of modes generates

only negative index modes α̃q. Thus we cannot get any additional c-number contributions

from commutators between the α̃ modes arising from our two operators.

Next we convert the modes α̃ to modes of type α. From (5.32) we see that we again

generate only negative index modes αp from each of the two sets of modes. Thus there

cannot be any additional c-number contribution from commutation between the modes α

arising from our two operators. In short, the only c-number contribution we get from ‘Wick

contraction’ is (6.7), and the remaining part of the state is given by independently moving

the two initial state modes past σ+
2 in the manner given in (5.36).

Putting this ‘Wick contraction’ term together with the contribution of the uncontracted

terms we get

σ+
2 (w0)α

(1)

AȦ,n1
α

(1)

BḂ,n2
|0−−

R 〉(1) ⊗ |0−−
R 〉(2)

=

[(

∑

p1

fB[n1, p1]αAȦ,p1

)(

∑

p2

fB[n2, p2]αBḂ,p2

)

+ CB
AȦBḂ

[n1, n2]

]

|χ〉 (6.8)

6.2 Two fermionic modes

Let us repeat this computation for two fermions in the initial state. Since the spectral flow

treats positive and negative charges differently, we work with the pair d++, d−− and later

write the result for general charges.

Consider

σ+
2 (w0)d

(1),++
n1

d(1),−−
n2

|0−−
R 〉(1) ⊗ |0−−

R 〉(2) (6.9)

with n1 ≤ 0, n2 < 0. We wish to move the modes to those acting after the σ+
2 operator.

We will get the terms corresponding to each of these modes moving across separately, but

there will also be a term resulting from the interaction between the two modes.
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Following the sequence of spectral flows and dualities we reach the t plane with all

punctures closed and the operator modes (cf. eq. (3.22), (3.24))

d(1),++
n1

d(1),−−
n2

→
(

1

2πi
2

1
2

∫

t=ia

ψ++
t (t1)(z0 + t21)

n1−1t1dt1

)

(

1

2πi
2

1
2

∫

t=ia

ψ−−
t (t2)(z0 + t22)

n2dt2

)

(6.10)

with the t1 contour outside the t2 contour.

There is no singularity inside the t2 contour so we get

d(1),−−
n2

→ 2
1
2

−n2−1
∑

k2=0

n2Ck2 (2ia)n2−k2 d̂−−

n2+k2+
1
2

(6.11)

For d
(1),++
n1 we write the full sum over modes

d(1)+A
n1

→ 1

2
1
2

∞
∑

k1=0

n1−1Ck1(2ia)
n1−k1 d̂+A

n1+k1−
1
2

+ 2
1
2

∞
∑

k1=0

n1−1Ck1(2ia)
n1−k1−1d̂+A

n1+k1+
1
2

(6.12)

The anticommutator arising from the first term gives

− (2ia)2(n1+n2)
−n2−1
∑

k2=0

n1−1C−n1−n2−k2
n2Ck2 (6.13)

while the anticommutator from the second term gives

− 2(2ia)2(n1+n2)
−n2−1
∑

k2=0

n1−1C−n1−n2−k2−1
n2Ck2 (6.14)

The sum of these two contributions can be simplified to give (we now include the result

for the pair d+−, d−+)

CF,αAβB[n1, n2] = −ǫαβǫAB

(

a2(n1+n2)Γ[−n1 + 1
2 ]Γ[−n2 + 1

2 ]

2πn1(n1 + n2)Γ[−n1]Γ[−n2]

)

(6.15)

Note that this is not symmetric in n1, n2 since the choice of Ramond vacuum |0−−
R 〉(1) ⊗

|0−−
R 〉(2) breaks the symmetry between + and − charge fermions.

Putting this ‘Wick contraction’ term together with the contribution of the uncontracted

terms we get

σ+
2 (w0)d

(1),++
n1

d(1),−−
n2

|0−−
R 〉(1) ⊗ |0−−

R 〉(2)

=

[(

∑

p1

fF+[n1, p1]d
++
p1

)(

∑

p2

fF−[n2, p2]d
−−
p2

)

+ CF,++−−[n1, n2]

]

|χ〉 (6.16)
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6.3 Summary

We have computed the c-number ‘Wick contraction’ term that results from the interaction

between two initial state modes. Note that after all the spectral flows we perform, we are

dealing with a theory of free bosons and fermions. Thus even if we had several modes in the

initial state, we can break up the effect of the twist σ+
2 into pairwise ‘Wick contractions’

(with value given by CB, CF computed above), and moving any noncontracted modes past

the twist σ+
2 using the expressions in section (5). So the computations of this section (5)

and the present section allow us to find the effect of σ+
2 on any initial state.

7 Complete action of the deformation operator on an initial bosonic

mode

In the last two sections we have focused on the effect of the twist σ+
2 . Let us now compute

an example where we combine this with the action of the supercharge described in section 4.

We start with the state containing one bosonic excitation, and find the state created

by the action of the deformation operator. Thus we wish to find the state

|ψ〉f = ÔȦ α
(1)

CĊ,n
|0−R〉(1) ⊗ |0−R〉(2) (7.1)

with n ≤ −1.

We follow the steps outlined in section 4. We have

|ψ〉f =

(

− σ+
2 (w0) G

(1)−

Ȧ,0
α

(1)

CĊ,n
+ G−

Ȧ,0
σ+

2 (w0) α
(1)

CĊ,n

)

|0−R〉(1) ⊗ |0−R〉(2) (7.2)

We have

σ+
2 (w0) G

(1)−

Ȧ,0
α

(1)

CĊ,n
|0−R〉(1) ⊗ |0−R〉(2)

= σ+
2 (w0) [G

(1)−

Ȧ,0
, α

(1)

CĊ,n
]|0−R〉(1) ⊗ |0−R〉(2)

= (−ǫACǫȦĊ) in σ+
2 (w0) d

(1)−A
n |0−R〉(1) ⊗ |0−R〉(2) (7.3)

We can now write down σ+
2 (w0)d

(1)−A
n |0−R〉(1) ⊗ |0−R〉(2) from (5.45). For the other term, we

first compute σ+
2 (w0)α

(1)

CĊ,m
|0−R〉(1)⊗|0−R〉(2) from (5.36), and apply the operator G−

Ȧ,0
using

G−

Ȧ,0
αCĊ,pσ

+
2 |0−R〉(1) ⊗ |0−R〉(2)

= [G−

Ȧ,0
, αCĊ,p]σ

+
2 |0−R〉(1) ⊗ |0−R〉(2) + αCĊ,pG

−

Ȧ,0
σ+

2 |0−R〉(1) ⊗ |0−R〉(2)

= (−ǫACǫȦĊ)
ip

2
d−A

p |χ〉 + αCĊ,p|ψ〉 (7.4)

where |ψ〉 is given in (3.33).

Putting together these two contributions, we get

ÔȦ α
(1)

CĊ,n
|0−R〉(1) ⊗ |0−R〉(2)

= (−ǫACǫȦĊ)
∑

p′≤−1

(

a2n+1Γ[12 − n]

πΓ[−n]

)(

a−(2p′+2)Γ[−p′ − 1
2 ]

2Γ[−p′]

)

d−A
2p′+1|χ〉

+
1

2
αCĊ,2n|ψ〉 (7.5)

where the states |χ〉, |ψ〉 are given in (3.29), (3.33).
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8 Discussion

In this paper we have considered several cases of the action of the deformation operator.

We first noted that we can break up the action of the deformation operator into that of

the twist σ+
2 and that of the supercharge. The effect of the supercharge can be computed

on any set of modes using the relations (4.1)–(4.8).

The effect of the twist on a single bosonic or single fermionic mode was computed in

section 5. This computation required us to relate modes defined by contours around one

point t = ia in the covering space, to modes defined on contours around t = ∞. But

the function on the latter contour had branch points in the t plane, and so we followed a

sequence of steps that related the mode on the initial contour to a linear combination of

modes on the outer contour.

If we have more than one mode in the initial state then we can have ‘Wick contractions’

between these modes, and the corresponding c-number contributions were computed in

section 6. Taken together, these computations give a set of methods by which we can in

principle compute the action of the deformation operator on any initial state.

The overall structure of the final state is the following. Since the exponential term

in (3.29) is present in all final states obtained by the action of the deformation operator,

we can get an arbitrary number of excitation pairs in the final state. Besides these pairs,

we can have a mode resulting from the a mode in the initial state, and also one bosonic

and one fermionic mode from the action of the supercharge G−. Any of these modes can

contract with another mode to give a c-number term; it can be seen that adding over all

such possible contractions gives the final state.
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A Notation and the CFT algebra

We have 4 real left moving fermions ψ1, ψ2, ψ3, ψ4 which we group into doublets ψαA

(

ψ++

ψ−+

)

=
1√
2

(

ψ1 + iψ2

ψ3 + iψ4

)(

ψ+−

ψ−−

)

=
1√
2

(

ψ3 − iψ4

−(ψ1 − iψ2)

)

(A.1)

Here α = (+,−) is an index of the subgroup SU(2)L of rotations on S3 and A = (+,−) is

an index of the subgroup SU(2)1 from rotations in T 4. The 2-point functions are

< ψαA(z)ψβB(w) >= −ǫαβǫAB 1

z − w
(A.2)

where we have defined the ǫ symbol as

ǫ+− = 1, ǫ+− = −1 (A.3)
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There are 4 real left moving bosons X1,X2,X3,X4 which can be grouped into a matrix

XAȦ =
1√
2
Xiσi =

1√
2

(

X3 + iX4 X1 − iX2

X1 + iX2 −X3 + iX4

)

(A.4)

where σi = σa, iI. The 2-point functions are

< ∂XAȦ(z)∂XBḂ(w) >=
1

(z −w)2
ǫABǫȦḂ (A.5)

The chiral algebra is generated by the operators

Ja = −1

4
(ψ†)αA(σTa)αβψ

βA (A.6)

Gα
Ȧ

= ψαA∂XAȦ, (G†)Ȧα = (ψ†)αA∂(X†)AȦ (A.7)

T = −1

2
(∂X†)AȦ∂XAȦ − 1

2
(ψ†)αA∂ψ

αA (A.8)

(G†)Ȧα = −ǫαβǫ
ȦḂGβ

Ḃ
, Gα

Ȧ
= −ǫαβǫȦḂ(G†)Ḃβ (A.9)

These operators generate the algebra

Ja(z)Jb(w) ∼ δab
1
2

(z − w)2
+ iǫabc Jc

z − w
(A.10)

Ja(z)Gα
Ȧ
(z′) ∼ 1

(z − z′)

1

2
(σaT )αβG

β

Ȧ
(A.11)

Gα
Ȧ
(z)(G†)Ḃβ (z′) ∼ − 2

(z−z′)3 δ
α
β δ

Ḃ
Ȧ
−δḂ

Ȧ
(σTa)αβ

[

2Ja

(z−z′)2 +
∂Ja

(z−z′)

]

− 1

(z−w)
δα
β δ

Ḃ
Ȧ
T (A.12)

T (z)T (z′) ∼ 3

(z − z′)4
+

2T

(z − z′)2
+

∂T

(z − z′)
(A.13)

T (z)Ja(z′) ∼ Ja

(z − z′)2
+

∂Ja

(z − z′)
(A.14)

T (z)Gα
Ȧ

∼
3
2G

α
Ȧ

(z − z′)2
+

∂Gα
Ȧ

(z − z′)
(A.15)

Note that

Ja(z)ψγC (w) ∼ 1

2

1

z − w
(σaT )γβψ

βC (A.16)

The above OPE algebra gives the commutation relations

[Ja
m, J

b
n] =

m

2
δabδm+n,0 + iǫab

cJ
c
m+n (A.17)

[Ja
m, G

α
Ȧ,n

] =
1

2
(σaT )αβG

β

Ȧ,m+n
(A.18)

{Gα
Ȧ,m

, Gβ

Ḃ,n
} = ǫȦḂ

[(

m2− 1

4

)

ǫαβδm+n,0+(m−n)(σaT )αγǫ
γβJa

m+n+ǫαβLm+n

]

(A.19)

[Lm, Ln] =
m(m2 − 1

4 )

2
δm+n,0 + (m− n)Lm+n (A.20)

[Lm, J
a
n ] = −nJa

m+n (A.21)

[Lm, G
α
Ȧ,n

] =
(m

2
− n

)

Gα
Ȧ,m+n

(A.22)
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