227 research outputs found

    Distributed time management in transputer networks

    Get PDF
    For real-time applications in a distributed system a common notion of time is indispensable. Clocks are used for time measurement, determination of causality, process synchronization and generating unique identifications. All this is only possible if there is a time reference of specified accuracy. Since the local clocks in a distributed system tend to drift away from each other, they need to be adjusted periodically. If the application allows an accuracy that can be met by software, this may be achieved by a distributed clock synchronization algorithm, which creates and maintains a global time reference for all nodes of the network. The design and simulation of such an algorithm for a distributed system consisting of transputers is described. It is based on second order filtered adjustment of the clock rates rather than updating the clock values at onc

    Involvement of A13 dopaminergic neurons in prehensile movements but not reward in the rat.

    Get PDF
    Tyrosine hydroxylase (TH)-containing neurons of the dopamine (DA) cell group A13 are well positioned to impact known DA-related functions as their descending projections innervate target regions that regulate vigilance, sensory integration, and motor execution. Despite this connectivity, little is known regarding the functionality of A13-DA circuits. Using TH-specific loss-of-function methodology and techniques to monitor population activity in transgenic rats in vivo, we investigated the contribution of A13-DA neurons in reward and movement-related actions. Our work demonstrates a role for A13-DA neurons in grasping and handling of objects but not reward. A13-DA neurons responded strongly when animals grab and manipulate food items, whereas their inactivation or degeneration prevented animals from successfully doing so-a deficit partially attributed to a reduction in grip strength. By contrast, there was no relation between A13-DA activity and food-seeking behavior when animals were tested on a reward-based task that did not include a reaching/grasping response. Motivation for food was unaffected, as goal-directed behavior for food items was in general intact following A13 neuronal inactivation/degeneration. An anatomical investigation confirmed that A13-DA neurons project to the superior colliculus (SC) and also demonstrated a novel A13-DA projection to the reticular formation (RF). These results establish a functional role for A13-DA neurons in prehensile actions that are uncoupled from the motivational factors that contribute to the initiation of forelimb movements and help position A13-DA circuits into the functional framework regarding centrally located DA populations and their ability to coordinate movement

    Increased levels and pulsatility of Follicle-Stimulating Hormone in mothers of hereditary dizygotic twins

    Get PDF
    According to the endocrine model of hereditary dizygotic twinning, high FSH is responsible for multiple ovulation and pregnancy. Our study explored the underlying neuroendocrine causes

    Stability Analysis of Frame Slotted Aloha Protocol

    Full text link
    Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency Identification (RFID) systems as the de facto standard in tag identification. However, very limited work has been done on the stability of FSA despite its fundamental importance both on the theoretical characterisation of FSA performance and its effective operation in practical systems. In order to bridge this gap, we devote this paper to investigating the stability properties of FSA by focusing on two physical layer models of practical importance, the models with single packet reception and multipacket reception capabilities. Technically, we model the FSA system backlog as a Markov chain with its states being backlog size at the beginning of each frame. The objective is to analyze the ergodicity of the Markov chain and demonstrate its properties in different regions, particularly the instability region. By employing drift analysis, we obtain the closed-form conditions for the stability of FSA and show that the stability region is maximised when the frame length equals the backlog size in the single packet reception model and when the ratio of the backlog size to frame length equals in order of magnitude the maximum multipacket reception capacity in the multipacket reception model. Furthermore, to characterise system behavior in the instability region, we mathematically demonstrate the existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor

    Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits.

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine's (ACh) regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE), an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg) administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission.This work was supported by the Royal Society and the European Union (Latin America/European Liason, LAEL).This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/1371/journal.pone.013332

    Early intervention for obsessive compulsive disorder : An expert consensus statement

    Get PDF
    © 2019 Elsevier B.V.and ECNP. All rights reserved.Obsessive-compulsive disorder (OCD) is common, emerges early in life and tends to run a chronic, impairing course. Despite the availability of effective treatments, the duration of untreated illness (DUI) is high (up to around 10 years in adults) and is associated with considerable suffering for the individual and their families. This consensus statement represents the views of an international group of expert clinicians, including child and adult psychiatrists, psychologists and neuroscientists, working both in high and low and middle income countries, as well as those with the experience of living with OCD. The statement draws together evidence from epidemiological, clinical, health economic and brain imaging studies documenting the negative impact associated with treatment delay on clinical outcomes, and supporting the importance of early clinical intervention. It draws parallels between OCD and other disorders for which early intervention is recognized as beneficial, such as psychotic disorders and impulsive-compulsive disorders associated with problematic usage of the Internet, for which early intervention may prevent the development of later addictive disorders. It also generates new heuristics for exploring the brain-based mechanisms moderating the ‘toxic’ effect of an extended DUI in OCD. The statement concludes that there is a global unmet need for early intervention services for OC related disorders to reduce the unnecessary suffering and costly disability associated with under-treatment. New clinical staging models for OCD that may be used to facilitate primary, secondary and tertiary prevention within this context are proposed.Peer reviewe

    Accumbal Cholinergic Interneurons Differentially Influence Motivation Related to Satiety Signaling

    Get PDF
    Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction, increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for investigating the endogenous cholinergic circuits that signal satiety.Peer reviewe
    corecore