26 research outputs found

    Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts

    Full text link
    © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2–7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100

    Long-term decline of the Amazon carbon sink

    Get PDF
    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6

    Synergistic ecoclimate teleconnections from forest loss in different regions structure global ecological responses

    Get PDF
    ABSTRACT: Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia’s GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change

    The response of tropical rainforests to drought : lessons from recent research and future prospects

    Get PDF
    Key message: we review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. - Context: tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex.- Aims: herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. - Results: this review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. - Conclusion: the numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance

    Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night-time CO2 net ecosystem exchange derived from radon and eddy covariance methods

    No full text
    Radon-222 (Rn-222) is used as a transport tracer of forest canopy–atmosphere CO&lt;sub&gt;2&lt;/sub&gt; exchange in an old-growth, tropical rain forest site near km 67 of the Tapajós National Forest, Pará, Brazil. Initial results, from month-long periods at the end of the wet season (June–July) and the end of the dry season (November–December) in 2001, demonstrate the potential of new Rn measurement instruments and methods to quantify mass transport processes between forest canopies and the atmosphere. Gas exchange rates yield mean canopy air residence times ranging from minutes during turbulent daytime hours to greater than 12 h during calm nights. Rn is an effective tracer for net ecosystem exchange of CO&lt;sub&gt;2&lt;/sub&gt; (CO&lt;sub&gt;2&lt;/sub&gt; NEE) during calm, night-time hours when eddy covariance-based NEE measurements are less certain because of low atmospheric turbulence. Rn-derived night-time CO&lt;sub&gt;2&lt;/sub&gt; NEE (9.00±0.99 μmol m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt; in the wet season, 6.39±0.59 in the dry season) was significantly higher than raw uncorrected, eddy covariance-derived CO&lt;sub&gt;2&lt;/sub&gt; NEE (5.96±0.51 wet season, 5.57±0.53 dry season), but agrees with corrected eddy covariance results (8.65±1.07 wet season, 6.56±0.73 dry season) derived by filtering out lower NEE values obtained during calm periods using independent meteorological criteria. The Rn CO&lt;sub&gt;2&lt;/sub&gt; results suggest that uncorrected eddy covariance values underestimate night-time CO&lt;sub&gt;2&lt;/sub&gt; loss at this site. If generalizable to other sites, these observations indicate that previous reports of strong net CO&lt;sub&gt;2&lt;/sub&gt; uptake in Amazonian terra firme forest may be overestimated.</p

    Asymmetric response of Amazon forest water and energy fluxes to wet and dry hydrological extremes reveals onset of a local drought‐induced tipping point

    Full text link
    Understanding the effects of intensification of Amazon basin hydrological cycling manifest as increasingly frequent floods and droughts on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change including forest tipping points Here we investigated the impacts of hydrological extremes on forest function using 12 years of observations between 2001 2020 of water and energy fluxes from eddy covariance along with associated ecological dynamics from biometry at the Tapaj s National Forest Measurements encompass the strong 2015 2016 El Ni o drought and La Ni a 2008 2009 wet events We found that the forest responded strongly to El Ni o Southern Oscillation ENSO Drought reduced water availability for evapotranspiration ET leading to large increases in sensible heat fluxes H Partitioning ET by an approach that assumes transpiration T is proportional to photosynthesis we found that water stress induced reductions in canopy conductance G sub s sub drove T declines partly compensated by higher evaporation E By contrast the abnormally wet La Ni a period gave higher T and lower E with little change in seasonal ET Both El Ni o Southern Oscillation ENSO events resulted in changes in forest structure manifested as lower wet season leaf area index However only during El Ni o 2015 2016 we observed a breakdown in the strong meteorological control of transpiration fluxes via energy availability and atmospheric demand because of slowing vegetation functions via shutdown of G sub s sub and significant leaf shedding Drought reduced T and G sub s sub higher H and E amplified by feedbacks with higher temperatures and vapor pressure deficits signaled that forest function had crossed a threshold from which it recovered slowly with delay post drought Identifying such tipping point onsets beyond which future irreversible processes may occur at local scale is crucial for predicting basin scale threshold crossing change
    corecore