948 research outputs found
Phase Transitions in Higher Derivative Gravity
This paper deals with black holes, bubbles and orbifolds in Gauss-Bonnet
theory in five dimensional anti de Sitter space. In particular, we study
stable, unstable and metastable phases of black holes from thermodynamical
perspective. By comparing bubble and orbifold geometries, we analyse associated
instabilities. Assuming AdS/CFT correspondence, we discuss the effects of this
higher derivative bulk coupling on a specific matrix model near the critical
points of the boundary gauge theory at finite temperature. Finally, we propose
another phenomenological model on the boundary which mimics various phases of
the bulk space-time.Comment: 33 pages, 12 figures, LaTeX, typos corrected, clarifications in
sections 5 and 6, references adde
On two-dimensionalization of three-dimensional turbulence in shell models
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model,
the signatures of so-called two-dimensionalization effect of three-dimensional
incompressible, homogeneous, isotropic fully developed unforced turbulence have
been studied and reproduced. Within the framework of shell models we have
obtained the following results: (i) progressive steepening of the energy
spectrum with increased strength of the rotation, and, (ii) depletion in the
energy flux of the forward forward cascade, sometimes leading to an inverse
cascade. The presence of extended self-similarity and self-similar PDFs for
longitudinal velocity differences are also presented for the rotating 3D
turbulence case
Is the evidence for dark energy secure?
Several kinds of astronomical observations, interpreted in the framework of
the standard Friedmann-Robertson-Walker cosmology, have indicated that our
universe is dominated by a Cosmological Constant. The dimming of distant Type
Ia supernovae suggests that the expansion rate is accelerating, as if driven by
vacuum energy, and this has been indirectly substantiated through studies of
angular anisotropies in the cosmic microwave background (CMB) and of spatial
correlations in the large-scale structure (LSS) of galaxies. However there is
no compelling direct evidence yet for (the dynamical effects of) dark energy.
The precision CMB data can be equally well fitted without dark energy if the
spectrum of primordial density fluctuations is not quite scale-free and if the
Hubble constant is lower globally than its locally measured value. The LSS data
can also be satisfactorily fitted if there is a small component of hot dark
matter, as would be provided by neutrinos of mass 0.5 eV. Although such an
Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the
position of the `baryon acoustic oscillation' peak in the autocorrelation
function of galaxies, it may be possible to do so e.g. in an inhomogeneous
Lemaitre-Tolman-Bondi cosmology where we are located in a void which is
expanding faster than the average. Such alternatives may seem contrived but
this must be weighed against our lack of any fundamental understanding of the
inferred tiny energy scale of the dark energy. It may well be an artifact of an
oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General
Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references
reformatted in journal style - text unchange
Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis
The effects of radiatively decaying, long-lived particles on big-bang
nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after
BBN, they may change the abundances of the light elements through
photodissociation processes, which may result in a significant discrepancy
between the BBN theory and observation. We calculate the abundances of the
light elements, including the effects of photodissociation induced by a
radiatively decaying particle, but neglecting the hadronic branching ratio.
Using these calculated abundances, we derive a constraint on such particles by
comparing our theoretical results with observations. Taking into account the
recent controversies regarding the observations of the light-element
abundances, we derive constraints for various combinations of the measurements.
We also discuss several models which predict such radiatively decaying
particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte
"The fruits of independence": Satyajit Ray, Indian nationhood and the spectre of empire
Challenging the longstanding consensus that Satyajit Ray's work is largely free of ideological concerns and notable only for its humanistic richness, this article shows with reference to representations of British colonialism and Indian nationhood that Ray's films and stories are marked deeply and consistently by a distinctively Bengali variety of liberalism. Drawn from an ongoing biographical project, it commences with an overview of the nationalist milieu in which Ray grew up and emphasizes the preoccupation with colonialism and nationalism that marked his earliest unfilmed scripts. It then shows with case studies of Kanchanjangha (1962), Charulata (1964), First Class Kamra (First-Class Compartment, 1981), Pratidwandi (The Adversary, 1970), Shatranj ke Khilari (The Chess Players, 1977), Agantuk (The Stranger, 1991) and Robertsoner Ruby (Robertson's Ruby, 1992) how Ray's mature work continued to combine a strongly anti-colonial viewpoint with a shifting perspective on Indian nationhood and an unequivocal commitment to cultural cosmopolitanism. Analysing how Ray articulated his ideological positions through the quintessentially liberal device of complexly staged debates that were apparently free, but in fact closed by the scenarist/director on ideologically specific notes, this article concludes that Ray's reputation as an all-forgiving, ‘everybody-has-his-reasons’ humanist is based on simplistic or even tendentious readings of his work
Gravitational Lensing by Black Holes
We review the theoretical aspects of gravitational lensing by black holes,
and discuss the perspectives for realistic observations. We will first treat
lensing by spherically symmetric black holes, in which the formation of
infinite sequences of higher order images emerges in the clearest way. We will
then consider the effects of the spin of the black hole, with the formation of
giant higher order caustics and multiple images. Finally, we will consider the
perspectives for observations of black hole lensing, from the detection of
secondary images of stellar sources and spots on the accretion disk to the
interpretation of iron K-lines and direct imaging of the shadow of the black
hole.Comment: Invited article for the GRG special issue on lensing (P. Jetzer, Y.
Mellier and V. Perlick Eds.). 31 pages, 12 figure
Search for heavy neutrinos mixing with tau neutrinos
We report on a search for heavy neutrinos (\nus) produced in the decay
D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in
the NOMAD detector. Both decays are expected to occur if \nus is a component
of .\
From the analysis of the data collected during the 1996-1998 runs with
protons on target, a single candidate event consistent with
background expectations was found. This allows to derive an upper limit on the
mixing strength between the heavy neutrino and the tau neutrino in the \nus
mass range from 10 to 190 . Windows between the SN1987a and Big Bang
Nucleosynthesis lower limits and our result are still open for future
experimental searches. The results obtained are used to constrain an
interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde
Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering
First measurements of azimuthal asymmetries in hadron-pair production in
deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron)
and NH_3 (proton) targets are presented. The data were taken in the years
2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c
at the CERN SPS. The asymmetries provide access to the transversity
distribution functions, without involving the Collins effect as in single
hadron production. The sizeable asymmetries measured on the NH_ target indicate
non-vanishing u-quark transversity and two-hadron interference fragmentation
functions. The small asymmetries measured on the ^6LiD target can be
interpreted as indication for a cancellation of u- and d-quark transversities.Comment: 13 pages, 4 figures, updated to the published versio
The Spin-dependent Structure Function of the Proton g_1^p and a Test of the Bjorken Sum Rule
The inclusive double-spin asymmetry, A_1^p, has been measured at COMPASS in
deepinelastic polarised muon scattering off a large polarised NH3 target. The
data, collected in the year 2007, cover the range Q2 > 1 (GeV/c)^2, 0.004 < x <
0.7 and improve the statistical precision of g_1^p(x) by a factor of two in the
region x < 0.02. The new proton asymmetries are combined with those previously
published for the deuteron to extract the non-singlet spin-dependent structure
function g_1^NS(x,Q2). The isovector quark density, Delta_q_3(x,Q2), is
evaluated from a NLO QCD fit of g_1^NS. The first moment of Delta_q3 is in good
agreement with the value predicted by the Bjorken sum rule and corresponds to a
ratio of the axial and vector coupling constants g_A/g_V =
1.28+-0.07(stat)+-0.10(syst).Comment: 12 pages, 5 figure
Leading order determination of the gluon polarisation from DIS events with high-p_T hadron pairs
We present a determination of the gluon polarisation Delta g/g in the
nucleon, based on the longitudinal double-spin asymmetry of DIS events with a
pair of large transverse-momentum hadrons in the final state. The data were
obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon
beam scattering off a polarised ^6LiD target. The gluon polarisation is
evaluated by a Neural Network approach for three intervals of the gluon
momentum fraction x_g covering the range 0.04 < x_g < 0.27. The values obtained
at leading order in QCD do not show any significant dependence on x_g. Their
average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (syst.) at x_g=0.09
and a scale of mu^2 = 3 (GeV/c)^2.Comment: 13 pages, 6 figures and 3 table
- …