2,459 research outputs found
On the statistical significance of the conductance quantization
Recent experiments on atomic-scale metallic contacts have shown that the
quantization of the conductance appears clearly only after the average of the
experimental results. Motivated by these results we have analyzed a simplified
model system in which a narrow neck is randomly coupled to wide ideal leads,
both in absence and presence of time reversal invariance. Based on Random
Matrix Theory we study analytically the probability distribution for the
conductance of such system. As the width of the leads increases the
distribution for the conductance becomes sharply peaked close to an integer
multiple of the quantum of conductance. Our results suggest a possible
statistical origin of conductance quantization in atomic-scale metallic
contacts.Comment: 4 pages, Tex and 3 figures. To be published in PR
Thermalization of an anisotropic granular particle
We investigate the dynamics of a needle in a two-dimensional bath composed of
thermalized point particles. Collisions between the needle and points are
inelastic and characterized by a normal restitution coefficient . By
using the Enskog-Boltzmann equation, we obtain analytical expressions for the
translational and rotational granular temperatures of the needle and show that
these are, in general, different from the bath temperature. The translational
temperature always exceeds the rotational one, though the difference decreases
with increasing moment of inertia. The predictions of the theory are in very
good agreement with numerical simulations of the model.Comment: 7 pages, 6 Figures, submitted to PRE. Revised version (Fig1, Fig5 and
Fig6 corrected + minor typos
Orthopedic surgery increases atherosclerotic lesions and necrotic core area in ApoE-/- mice
Background and aims Observational studies show a peak incidence of cardiovascular events after major surgery. For example, the risk of myocardial infarction increases 25-fold early after hip replacement. The acuteness of this increased risk suggests abrupt enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic inflammation following major orthopedic surgery induces such changes. Methods ApoE−/− mice were fed a western diet for 10 weeks. Thereafter, half the mice underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n = 22) or post-saline injection (n = 13). Serum amyloid A (SAA) was measured as a marker of systemic inflammation. Paraffin embedded slides of the aortic root were stained to measure total plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells. Results Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and developed increased plaque and necrotic core area already at 5 days, which reached significance at 15 days (p = 0.019; p = 0.004 for plaque and necrotic core, respectively). Macrophage and lymphocyte density significantly decreased in the surgery group compared to the control group at 15 days (p = 0.037; p = 0.024, respectively). The density of neutrophils and mast cells remained unchanged. Conclusions Major orthopedic surgery in ApoE−/− mice triggers a systemic inflammatory response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of the necrotic core. The role of intra-plaque inflammation in this response to surgical injury remains to be fully elucidated. © 2016 Elsevier Ireland Lt
GFC-Robust Risk Management under the Basel Accord using Extreme Value Methodologies
In this paper we provide further evidence on the suitability of the median of the point VaR forecasts of a set of models as a GFC-robust strategy by using an additional set of new extreme value forecasting models and by extending the sample period for comparison. These extreme value models include DPOT and Conditional EVT. Such models might be expected to be useful in explaining financial data, especially in the presence of extreme shocks that arise during a GFC. Our empirical results confirm that the median remains GFC-robust even in the presence of these new extreme value models. This is illustrated by using the S&P500 index before, during and after the 2008-09 GFC. We investigate the performance of a variety of single and combined VaR forecasts in terms of daily capital requirements and violation penalties under the Basel II Accord, as well as other criteria, including several tests for independence of the violations. The strategy based on the median, or more generally, on combined forecasts of single models, is straightforward to incorporate into existing computer software packages that are used by banks and other financial institutions
GFC-Robust Risk Management Under the Basel Accord Using Extreme Value Methodologies
In McAleer et al. (2010b), a robust risk management strategy to the Global Financial Crisis (GFC) was proposed under the Basel II Accord by selecting a Value-at-Risk (VaR) forecast that combines the forecasts of different VaR models. The robust forecast was based on the median of the point VaR forecasts of a set of conditional volatility models. In this paper we provide further evidence on the suitability of the median as a GFC-robust strategy by using an additional set of new extreme value forecasting models and by extending the sample period for comparison. These extreme value models include DPOT and Conditional EVT. Such models might be expected to be useful in explaining financial data, especially in the presence of extreme shocks that arise during a GFC. Our empirical results confirm that the median remains GFC-robust even in the presence of these new extreme value models. This is illustrated by using the S&P500 index before, during and after the 2008-09 GFC. We investigate the performance of a variety of single and combined VaR forecasts in terms of daily capital requirements and violation penalties under the Basel II Accord, as well as other criteria, including several tests for independence of the violations. The strategy based on the median, or more generally, on combined forecasts of single models, is straightforward to incorporate into existing computer software packages that are used by banks and other financial institutions
Nonlinear atom optics and bright gap soliton generation in finite optical lattices
We theoretically investigate the transmission dynamics of coherent matter
wave pulses across finite optical lattices in both the linear and the nonlinear
regimes. The shape and the intensity of the transmitted pulse are found to
strongly depend on the parameters of the incident pulse, in particular its
velocity and density: a clear physical picture for the main features observed
in the numerical simulations is given in terms of the atomic band dispersion in
the periodic potential of the optical lattice. Signatures of nonlinear effects
due the atom-atom interaction are discussed in detail, such as atom optical
limiting and atom optical bistability. For positive scattering lengths, matter
waves propagating close to the top of the valence band are shown to be subject
to modulational instability. A new scheme for the experimental generation of
narrow bright gap solitons from a wide Bose-Einstein condensate is proposed:
the modulational instability is seeded in a controlled way starting from the
strongly modulated density profile of a standing matter wave and the solitonic
nature of the generated pulses is checked from their shape and their
collisional properties
Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases
We analyze the ground-state properties and the excitation spectrum of
Bose-Einstein condensates of trapped dipolar particles. First, we consider the
case of a single-component polarized dipolar gas. For this case we discuss the
influence of the trapping geometry on the stability of the condensate as well
as the effects of the dipole-dipole interaction on the excitation spectrum. We
discuss also the ground state and excitations of a gas composed of two
antiparallel dipolar components.Comment: 12 pages, 9 eps figures, final versio
Inelastic Scattering Time for Conductance Fluctuations
We revisit the problem of inelastic times governing the temperature behavior
of the weak localization correction and mesoscopic fluctuations in one- and
two-dimensional systems. It is shown that, for dephasing by the electron
electron interaction, not only are those times identical but the scaling
functions are also the same.Comment: 10 pages Revtex; 5 eps files include
Quantum phase gate with a selective interaction
We present a proposal for implementing quantum phase gates using selective
interactions. We analize selectivity and the possibility to implement these
gates in two particular systems, namely, trapped ions and Cavity QED.Comment: Four pages of TEX file and two EPS figures. Submitted for publicatio
The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans
Open Access via PMC2649417Peer reviewedPublisher PD
- …
