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Abstract 

Background and aims: Observational studies show a peak incidence of cardiovascular 

events after major surgery. For example, the risk of myocardial infarction increases 25-fold 

early after hip replacement. The acuteness of this increased risk suggests abrupt 

enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, 

thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic 

inflammation following major orthopedic surgery induces such changes. 

Methods: ApoE-/- mice were fed a western diet for 10 weeks. Thereafter, half the mice 

underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, 

to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n=22) or 

post-saline injection (n=13). Serum amyloid A (SAA) was measured as a marker of systemic 

inflammation. Paraffin embedded slides of the aortic root were stained to measure total 

plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells.  

Results: Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and 

developed increased plaque and necrotic core area already at 5 days, which reached 

significance at 15 days (p=0.019; p=0.004 for plaque and necrotic core, respectively). 

Macrophage and lymphocyte density significantly decreased in the surgery group compared 

to the control group at 15 days (p=0.037; p=0.024, respectively). The density of neutrophils 

and mast cells remained unchanged. 

Conclusions: Major orthopedic surgery in ApoE-/- mice triggers a systemic inflammatory 

response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of 

the necrotic core. The role of intra-plaque inflammation in this response to surgical injury 

remains to be fully elucidated. 
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Introduction 

Observational epidemiological studies have confirmed what experienced clinicians suspected 

for many years: cardiovascular events can be triggered by a variety of common non-

cardiovascular clinical conditions, particularly those that are associated with systemic 

inflammation 1-3. One of the best documented examples of non-infectious systemic 

inflammation causing an acute increase in cardiovascular risk is major surgery. A recent 

study indicated that the risk of myocardial infarction in patients undergoing total hip or knee 

replacement is increased by no less than 25 fold, mainly during the first days to weeks post-

surgery 2. This phenomenon is hardly investigated and the mechanisms which underlie this 

postoperative risk remain elusive.  

The acuteness of the increased postoperative cardiovascular risk suggests an effect on 

atherosclerotic plaque stability 4. Several studies indeed show that at least half of the cases 

of myocardial infarction following non-cardiac surgery originate from rupture of unstable 

plaques 5-7. Why plaques could become more prone to rupture briefly after surgery is unclear. 

Plaque instability is not only related to factors such as fibrous cap strength and intra-plaque 

hemorrhage, but also to the necrotic core area which, in turn, are all influenced by intra-

plaque inflammation 8-11.  

Plaque area was shown to increase in mice after a single injection of serum amyloid A 

peptide, a marker and mediator of inflammation12 . A recent study addressing the combined 

effects of major blood loss and surgery reported increased plaque size growth as well as 

increased plaque vulnerability already after 72 hours 7. Major orthopedic surgery is known to 

cause massive systemic inflammation 13. We therefore hypothesized that acute systemic 

inflammation caused by major orthopedic surgery could rapidly enhance plaque vulnerability 

by means of increased intra-plaque inflammation, fibrous cap thinning and/or necrotic core 

expansion, and we addressed this hypothesis in atherosclerosis-prone ApoE-/- mice. 
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Materials and methods  

Mouse model  

ApoE-/- mice (9-10 weeks old) were obtained from Charles River Laboratories (Calco 

Como,Italy) and housed in specific pathogen-free rooms, on a 12-h light–dark cycle. All mice 

were fed a high-fat diet (0.15 % cholesterol) (4022.83, AB diets, Woerden, the Netherlands) 

for 10 weeks after which the surgery group underwent a mid-shaft femur osteotomy followed 

by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Under 

general anesthesia (2% isoflurane) and analgesia (0.1 mg/kg buprenorfine), the femur was 

accessed via a lateral skin incision of the greater trochanter just proximal of the knee joint. 

The femur was approached using microsurgical scissors and forceps. With a dental mini-

cutter, a mid-shaft osteotomy was performed. After that a stainless steel 0.6 mm K-wire 

(DePuy Synthes, Amersfoort, The Netherlands) was retrogradely introduced into the medulla 

of the femur until it exited medial and proximal of the greater trochanter. This was done using 

an electrical rotary system (Model 3000, Dremel, Breda). The osteomy was reduced and the 

osteotomy was stabilized by normogradely introducing the K-wire into the medulla of the 

distal femur until seated in the distal metaphysis. The K-wire was cut flush with the 

trochanter, where after the wound was closed by interrupted sutures (Monocryl 5-0 FS-2, 

Eticon) for both the femoral fascia and skin. During the operation bleeding was kept to a 

minimum by using bipolar radiofrequency micro-forceps (Pfizer, Valleylab Force 30). Blood 

was sampled after a 4-hour fasting period at several time points surrounding surgery/control 

(t=-1 day, 1 day, 5 days and 15 days). Mice in both operation (n=22) and control group 

(n=13) were sacrificed 5 or 15 days post-surgery respectively post-saline injection. All 

procedures were approved by the Animal use and care Committee at the VU University 

Medical Centre of Amsterdam.  

 

Analysis of systemic inflammation and serum lipids  

Levels of serum amyloid A (SAA), soluble VCAM-1 (CD106) and soluble E-selectin (CD62E) 

were measured by ELISA (Life Technologies, Bleiswijk, the Netherlands for SAA and R&D 
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Systems, Abingdon, UK, for VCAM-1 and E-selectin). Total serum cholesterol and 

triglyceride levels were measured in serum by commercially available enzymatic assays 

(cholesterol CHOD-PAP 11491458 and triglycerides GPO-PAP 11488872, Roche, Woerden, 

the Netherlands). For determination of the lipid profile, pooled plasma per group was 

fractionated using an ÅKTA fast protein liquid chromatography system (Pharmacia, 

Roosendaal, the Netherlands). Fractions were collected and assayed for total cholesterol 

using an enzymatic assay cholesterol CHOD-PAP 11491458 (Roche) and analysed as 

reported 14. 

 

(Immuno)histochemistry and morphometry  

Dissected hearts including the aortic roots were embedded in paraffin after overnight fixation 

(4 % formalin) for analysis of atherosclerosis. Serial cross-sections (4 µm) directly distal to 

the valve area of the aortic root were stained with Alcian Blue (indicative of 

glycosaminoglycans), Elastica van Gieson, Von Kossa and MAC-3, scanned with a 

PathScan Enabler IV, after which the mean surface area of plaque and the concordant area 

of fibrosis (EVG), calcification (Von Kossa) and macrophage area (MAC-3) was analysed 

blindly from each specimen using QuickPHOTO MICRO 3.0 software or in the case of the 

MAC-3 staining and the fibrous cap thickness15 with ImageJ software. The necrotic core area 

was calculated by subtracting the area of fibrosis, calcification and macrophages from the 

total plaque area. For immunohistochemical analysis, serial cross-sections were dewaxed, 

rehydrated and incubated in methanol/H2O2 (0.3%) for 30 minutes to block endogenous 

peroxidases. Antigen retrieval was performed using pepsin for 25 minutes at 37 °C (Ly-6G 

and CD206), boiling in Tris-EDTA buffer, pH 9.0 (Caspase-3) or in citrate buffer, pH 6.0, for 

15 minutes at 100 °C using a microwave (MAC-3 and i NOS). Sections were incubated with 

normal rabbit serum (1:50 dilution, DAKO, X0902) for 10 minutes at room temperature (RT) 

and subsequently with the primary antibody using rat-anti-mouse-MAC-3 antibody, detecting 

macrophages (1:30 dilution, BD Pharmingen, clone M3/84, cat. 553322, overnight, RT) or 

rat-anti-mouse-Ly6G antibody (detecting neutrophilic granulocytes) (1:200 dilution, BD 
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Pharmingen, clone 1Ab, cat. 551459, 1 hour, RT) as appropriate. Thereafter, sections were 

incubated with biotinylated rabbit-anti-rat (1:300 dilution, DAKO, E0468, 30 minutes)/ 

Streptavidin-HRP (1:100 dilution, DAKO, P0397, 1 hour). For iNOS staining (to detect type 1 

macrophages) the primary antibody polyclonal rabbit-anti-iNOS (1:200 dilution, Abcam, 

Ab15323, 1 hour, RT) was used and for the Caspase-3 (apoptosis marker) the primary 

antibody polyclonal Rabbit-anti-Caspase-3 (1:500 dilution, cell signaling technology, cat. 

9661-L, 1 hour, RT) was used. Both were followed by incubation with HRP labeled anti-rabbit 

(100 µl undiluted, DAKO, K4003) for 30 minutes. For the CD206 staining (detecting type 2 

macrophages) the primary antibody polyclonal Rabbit-anti-mannose receptor CD206 (1:1000 

dilution, Abcam, Ab64693, 1 hour, RT) was used, followed by a swine anti-rabbit HRP 

secondary antibody (1:100 dilution, DAKO P0217, 30 minutes, RT). For CD45 staining 

(detecting lymphocytes), antigen retrieval was performed using citrate buffer, pH 6.0, for 15 

minutes at 100⁰C using a microwave. Sections were incubated in water (97°C) for 30 

minutes and subsequently incubated in methanol/H2O2 (0.3%) for 30 minutes. Afterwards, 

sections were incubated with rat-anti-mouse-CD45 antibody (1:50 dilution, BD Pharmingen, 

cat. 550539, overnight, 4°C), rinsed in PBS, incuba ted with rabbit-anti-rat-HRP (1:50 dilution, 

DAKO, P0450) for 30 minutes. All staining’s were visualized with 3,3-diamino-benzidine-

tetrahydrochloride/H2O2(DAB, 0.1 mg/ml, 0.02% H2O2) for 10 minutes and counterstained 

with haematoxylin. Mast cells were stained with Toluidine Blue 1%. MAC-3 area was 

quantified as percentage MAC-3 positive staining of the total plaque area, using an 

automated macro in ImageJ software. Numbers of Ly-6G and CD45 positive cells were 

manually quantified per surface area of the atherosclerotic plaque as cells/µm2. 

Immunoscoring was performed by R.L and W.W.F. and agreement was reached between 

both observers.  

 

Statistics  

Statistical analysis was performed with SPSS (20.0 for Windows, SPSS Inc.). To test for 

differences in plaque area, necrotic core area and inflammatory cells between groups, an 
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independent sample t-test was used when the data were normally distributed, or a Mann–

Whitney U test if not. All data are presented as median and interquartile range. Results were 

considered statistically significant if the two-sided p-value was <0.05.  

Results 

Surgery causes acute systemic inflammation 

To determine whether major orthopedic surgery was indeed accompanied by an acute 

systemic inflammatory response, we measured serum SAA levels at different time points (t=-

1 day, 4 hours, 1 day, 5 days and, in the late-sacrifice group, after 15 days) (Fig. 1A). SAA 

levels had increased 4 hours after surgery, increased by almost 100 fold after 24 hours, and 

returned to baseline levels within 5 days. In contrast, SAA values in the control group 

remained low and stable. Endothelial inflammation markers (VCAM-1 and E-selectin) did not 

increase in response to trauma (Fig. 1BC).  

 

Surgery transiently decreases body weight and alters lipid profile 

Mice in the surgery group had weight loss (6.6%) at 5 days compared to baseline, whereas 

control mice gained weight (5.8%). Serum cholesterol and triglyceride levels were measured 

at t=-1 day, 1 day, 5 days and, in the late-sacrifice group, after 15 days. We observed a 

transient lipid-lowering effect of surgery. This effect was relatively small for cholesterol (Fig. 

1D), but more pronounced for triglycerides (Fig. 1E). The lipoprotein profile for cholesterol 

distribution in VLDL, LDL and HDL-sized particles showed a slight reduction in VLDL which 

was paralleled by an equally small increase in LDL from t=5 days onward (Fig. 1F-I). 

 

Surgery does not increase the content of inflammatory cells within atherosclerotic lesions 

We observed a significant reduction (p=0.037) of the macrophage area relative to the total 

atherosclerotic plaque area between the surgery and control group at t=15 days (Fig. 2B). 

Subtyping of typical type 1 macrophages (M1 - iNOS positive area) and type 2 macrophages 

(M2 - CD206 positive area) relative to total macrophage area (MAC-3 positive area) was 
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performed (Fig. 2D,F). At t=5 days, a significantly lower M1 fraction was observed in the 

surgery group 44% [33-54] versus 55% [47-87] in the control group; p=0.028) which 

increased significantly to 80% [66-121] (p=0.007) at 15 days. The relative density of M2 

macrophages was not affected significantly. No significant differences were found between 

surgery and control mice in the number of neutrophilic granulocytes (Ly-6g) and mast cells 

(toluidine blue) (Fig. 2H and J). We did, however, observe a significant reduction in 

lymphocyte density (Fig. 2L) 15 days post-surgery as compared to the control group 

(p=0.024).  

 

Atherosclerotic plaque and necrotic core area increase after surgery 

Aortic root sections of all experimental groups showed advanced atherosclerotic lesions  

infiltrated by macrophages and lymphocytes, with a thin fibrous cap (Fig. 3A-D). To assess 

the effect of surgery, we measured total plaque area in the root, and evaluated the relative 

contribution of different plaque components. At t=5 days, a non-significant 5.5% higher 

plaque area was observed in the surgery group (481 x 103 µm2  [387-558] versus 456 x 103 

µm2 [394-491] in the control group; p=0.297). This difference became more pronounced and 

statistically significant at t=15 days; (519 x 103 µm2 [485-634] in operated mice versus 387 x 

103 µm2 [331-464] in control mice, p=0.019; Fig. 3E). This plaque enlargement was mainly 

attributable to a 160% increase in the necrotic core area (257 x 103 µm2 [151-315] in operated 

mice versus 99.0 x 103 µm2 [71.2-155] in control mice, p=0.004; Fig. 3F). The area of the 

other plaque compartments (fibrosis, macrophages, calcification and apoptosis) did not 

significantly contribute to the increase in plaque area (Fig. 4). Also, we found no evidence of 

fibrous cap thinning at t=5 days (28.7 [22.4-42.3] µm in operated mice versus 19.8 [17.5-

37.2] µm in control mice, p=0.3), nor at t=15 days (36.7 [29.6-45.2] µm in operated mice 

versus 24.5 [18.7-42.3] µm in control mice, p=0.6). In addition, we assessed old intra-plaque 

hemorrhage but only found small non-significant areas of Fe-positivity that had only a very 

minor contribution to the total area and that did not differ between groups (data not shown). 

Finally, in the roots of all mice (surgery and control) Alcian Blue positive staining was 
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observed both in the necrotic core area and in the other regions of the plaque, with no 

differences between the groups.  

 

Discussion 

Major orthopedic surgery in ApoE-/- mice causes acute systemic inflammation. At 15 days 

post-surgery, we observed a significant increase of plaque area, mainly due to necrotic core 

enlargement. Plaque necrosis is a characteristic hallmark of atherosclerotic lesions that 

causes acute atherothrombotic vascular disease 9-11. Our finding of a post-surgery increase 

of necrotic core area may reflect increased plaque vulnerability and could, at least partly, 

explain the increased incidence of cardiovascular events after major orthopedic surgery. 

The surgical procedure caused a marked acute systemic inflammatory response as 

demonstrated by a rapid increase in SAA, a relatively stable inflammation marker that 

integrates the signals of proatherogenic cytokines (IL1, TNFα, IL6), many of which may have 

contributed to the effect on the atherosclerotic leasion16, 17. Several studies suggest that SAA 

itself participates in the pathogenesis of atherosclerosis and a recent study shows that it may 

contribute to plaque vulnerability 18. For instance, SAA induces TGF-β, increases vascular 

biglycan content, and increases LDL retention 19. SAA also stimulates NF-κB activation and 

induces the expression of pro-atherosclerotic factors, such as ICAM-1, MCP-1, MMP-9 and 

tissue factor in macrophages 20. Lastly, SAA displaces apoA-I from the surface of the HDL 

particle, thus generating free apoA-I, which is cleared faster by the kidney, thus potentially 

affecting the anti-atherogenic effect of HDL21. In addition to the effects on SAA, we observed 

a slight effect on circulating lipoproteins (i.e. decrease in VLDL and increase in LDL) in the 

orthopedic surgery group. Although the shift toward more atherogenic particles is relatively 

small,  it may have contributed to the development of atherosclerosis in the orthopedic 

surgery group.   

We did not find indications of fibrous cap thinning after orthopedic surgery, which besides 

necrotic core expansion is another hallmark of vulnerable, inflammatory plaque8, 22. We 
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cannot exclude fibrous cap thinning because it is known to be very heterogeneously 

distributed, varying between and within lesions23. In parallel, we did not find an increased 

density of inflammatory cells after orthopedic surgery. This may have been caused by the 

fact that we examined plaques after 5 and 15 days. We cannot exclude inflammatory cell 

infiltration taking place before these time points and that activated macrophages in particular 

had already ‘dissolved’ at 5 days, contributing to the necrotic core. Indeed, death of lesional 

macrophages promotes the formation of plaque necrosis 9, and could thus be compatible 

with the decreased plaque macrophage content we observed at later time points. Similarly, 

activation of lymphocytes may cause loss of CD45-positive epitopes and cells can become 

undetectable by CD45-staining. It thus remains possible that surgery-induced intra-plaque 

inflammation due to infiltration of immune cells contributed to the observed increase in the 

necrotic core area (and hence total lesion area).  

There is a growing understanding that the balance between pro- and anti-inflammatory 

macrophages in plaque is dynamic. 24. We found an increase in the fraction of M1 pro-

inflammatory macrophages at 15 days, supporting a pro-inflammatory postoperative plaque 

milieu.  

We have found no differences between the different groups and time points for Caspase-3, 

an apoptosis marker, and therefore we cannot conclude that apoptosis is a major driver of 

the necrotic core expansion after surgery. Of note, however, these test also do not exclude a 

role for apoptosis. Caspase-3 staining is a temporary phenomenon in apoptosis and after 

some time, Caspase-3 staining in the necrotic core could be lost. This also emphasizes the 

need for future studies addressing earlier time points and more in-depth characterization of 

biomarker profile, and inflammatory cell activity in similar experimental designs.  

Several related experimental studies merit discussion. Recently, a study in ApoE-/- mice 

addressed the combined effects of major blood loss and surgery, and reported increased 

plaque size after 72 hours, along with signs of plaque vulnerability 7. However, this effect 

appeared to be mainly due to excessive blood loss (20% of body weight; which is 

substantially more than in our model), rather than surgery itself. As in our study, the density 
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of intra-plaque macrophages did not differ, but other inflammatory cell types were not 

quantified. A few experimental studies addressed the effects of acute systemic inflammation 

on atherosclerosis. A recent murine model of intra-abdominal sepsis suggested that 

atherosclerotic plaque area was enhanced by sustained systemic, endothelial and intimal 

inflammation, and was not explained by infection itself 25.  More specifically, an increase in 

intra-plaque macrophages was observed 5 months after the induction of sepsis via cecal 

ligation and puncture. This coincides with a sustained elevated level of IL6, suggesting that 

this model mimics a chronic inflammatory state, in contrast to our model of transient acute 

inflammation. No data on macrophage density at earlier time points (nor other inflammatory 

cell types) were reported. Another study in ApoE-/- mice showed that influenza virus infection 

caused subendothelial infiltration of a heterogeneous population of cells 26. These cells were 

however not quantified per type and plaque area was not assessed. Lastly a study again in 

ApoE-/- mice demonstrated that the systemic inflammatory response to myocardial infarction 

aggravates chronic atherosclerosis 22. Together with the results described herein, these 

studies support an important role for systemic inflammation in plaque destabilization and 

might thereby contribute to increased risk of cardiovascular events. 

Our study has the following limitations: our goal was to evaluate effects of major 

(orthopedic) surgery on atherosclerotic plaque. Although we found plaque changes 

congruent with increased event risk, the study wasn’t designed to clarify responsible 

mechanism(s). Our data are compatible with a role for surgery-induced inflammation, but this 

requires more in-depth studies. In addition, other, non- or indirect inflammatory effects of 

surgery could be further explored. For instance, hemodynamic disturbances 27, sympathetic 

nerve system activation 28 or enhanced platelet activity29 are potential contributors to 

atherosclerotic lesion development and increased cardiovascular risk. Furthermore it would 

be interesting to test our findings in advanced mouse models to study actual plaque 

complications rather than atherosclerotic plaque development alone 30, 31.  
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In conclusion, major surgery can cause a strong systemic inflammatory response and lead to 

an increase in plaque and necrotic core area, contributing to plaque vulnerability. These 

findings may help explain the high incidence of cardiovascular events following major surgery 

and, in a broader perspective, other clinical conditions of acute systemic inflammation.  
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Fig. 1. Major orthopedic surgery transiently increases serum SAA levels and 

decreases serum lipids. The vertical dotted line represents the timing of surgery. Serum 

levels of (A) SAA (µg/ml), (B) E-selectin (ng/ml), (C) VCAM-1 (µg/m), (D) cholesterol (mM), 

(E) triglycerides and (F-H) lipoprotein profile for cholesterol distribution in VLDL, LDL and 

HDL-sized particles at baseline and at different time points after surgery (n=22) or control 

(n=13). 

 

Fig. 2. MAC-3 positive area divided by total plaque area (%) at t=15 days post-surgery 

decreases. (A) MAC-3 positive area (encircled) in the plaque (B) divided by total plaque area 

(%).  (C) iNOS positive area (encircled) in the plaque (D) divided by MAC-3 positive area 

(%). (E) CD206 positive area (encircled) in the plaque (F) divided by MAC-3 positive area 

(%). (G) Ly-6g positive cells in the plaque (H) divided by the total plaque area (cells/µm2). (I) 

Toluidine blue stained cells in the adventitia (J) divided by the area of adventitia (cells/mm2). 

(K) CD45 positive cells in the plaque (L) divided by the total plaque area (cells/µm2). Arrows 

point out positive cells. P=plaque; L=lumen; Ad=adventitia. Magnification of A,C,E 10x; 

magnification G and K 40x; magnification I 50x. All expressed the aortic root of mice 

sacrificed at t=5 days post-surgery (n=12) or control (n=7) or t=15 days post-surgery (n=10) 

or control (n=6). 

 

Fig. 3. Major orthopedic surgery increases atherosclerotic plaque and necrotic core 

area. (A) Representative images of EVG stained cross-sections of the aortic root after 5 days 

without surgery, 5 days with surgery (B), 15 days without surgery (C), 15 days with surgery 

(D). All showing 10x magnified advanced atherosclerotic lesions (encircled) with necrotic 

cores (NC) and areas of fibrosis (F). The arrows indicate the media, the lumen (L) is largely 

composed of erythrocytes. (E) Plaque area (x103 µm2) and (F) necrotic core area (x103 µm2) 
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at the aortic root of mice sacrificed at t=5 days post-surgery (n=12) or control (n=7) or t=15 

days post-surgery (n=10) or control (n=6) . 

 

Fig. 4. Major orthopedic surgery shows no significant effect on area of fibrosis, 

macrophages and calcification. Plaque area (x 103 µm2) of fibrosis based on a EVG 

staining (A), macrophages based on a MAC-3 staining (B), calcification based on a Von 

Kossa staining (C) and apoptosis based on a caspase-3 staining (D) at the aortic root of mice 

sacrificed at t=5 days post-surgery (n=12) or control (n=7) or t=15 days post-surgery (n=10) 

or control (n=6) (all p-values >0.05). 
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Highlights 

• We hypothesized that the systemic inflammatory response following major orthopedic 

surgery causes increased plaque vulnerability expressed as local inflammation, 

plaque area and/or increased necrotic core area.  

• We found that major surgery causes a marked systemic inflammatory response and 

leads to an increase in plaque and necrotic core area.  

• These findings may help explain the high incidence of cardiovascular events following 

major surgery and, in a broader perspective, other clinical conditions of acute 

systemic inflammation.  

 


