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Abstract: Side-step cutting is an action associated with non-contact anterior cruciate ligament (ACL)
injury with a plethora of negative economical, health, and psychological implications. Although ACL
injury risk factors are multifactorial, biomechanical and neuromuscular deficits which contribute to
“high-risk” and aberrant movement patterns are linked to ACL injury risk due to increasing knee
joint loads and potential ACL loading. Importantly, biomechanical and neuromuscular deficits are
modifiable; thus, being able to profile and classify athletes as potentially “high-risk” of injury is a cru-
cial process in ACL injury mitigation. The Cutting Movement Assessment Score (CMAS) is a recently
validated field-based qualitative screening tool to identify athletes that display high-risk postures
associated with increased non-contact ACL injury risk during side-step cutting. This article provides
practitioners with a comprehensive and detailed overview regarding the rationale and implementa-
tion of the CMAS. Additionally, this review provides guidance on CMAS methodological procedures,
CMAS operational definitions, and training recommendations to assist in the development of more
effective non-contact ACL injury risk mitigation programmes.

Keywords: side-step; side-stepping; knee abduction moment; injury screening; injury risk profiling

1. Introduction

An anterior cruciate ligament injury (ACL) is considered one of the most significant
and debilitating injuries an athlete can experience, with an abundance of negative eco-
nomic [1–3], psychological [1,4], and health [1,5] implications. ACL injury risk factors are
multifactorial (anatomical, hormonal, biomechanical, neuromuscular, environmental) [1,6]
and a complex interaction of both internal (within the body) and external (outside the body)
factors [6–8]. In simplistic terms, ACL injuries occur when a catastrophic applied load
exceeds the ligament’s tolerance [7,9], or due to a “fatigue failure” mechanism whereby the
accumulation of high magnitudes and repetitive cycles of knee joint loading [10–14]. This
process, without adequate rest and repair, can lead to micro damage and subsequent ACL
failure [13] from mechanical loads which previously could be tolerated [14–16]. Mitigating
ACL injury risk therefore is considered highly important in sports medicine and science
environments.

Non-contact ACL injuries generally occur during high-impact tasks such as change of
directions (COD) (side-step, cut or turn, plant-and-cut manoeuvres) [17–26], landing (pre-
dominantly single-leg weight bearing) [17,19,21,25,27], and deceleration actions [20,21,28];
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attributable to the potential generation of high multiplanar knee joint loading (flexion,
rotation, abduction and translatory moments) during foot contact [29–33], thus increasing
ACL strain [34–38]. These multiplanar knee joint loads are often used as surrogates of
non-contact ACL injury risk [29,32,39,40], and are amplified during COD, landings, and
decelerations when aberrant and “high-risk” neuromuscular control and biomechanical
deficits are displayed (e.g., lateral trunk flexion, knee valgus, etc.) [1,31–33,41–43]. Impor-
tantly, neuromuscular control and biomechanical deficits are modifiable through appro-
priate training and conditioning [31–33,41,42,44,45], which may reduce knee joint loading
during high-impact actions and subsequent risk of non-contact ACL injury [1,43–46]. As
such, the mechanism of ACL injury, from a knee joint loading perspective, has been stated
as “multiplanar” [6]; highlighting the importance of reducing multiplanar joint loading
during high-risk activities to mitigate ACL injury risk [9,47,48].

2. Qualitative Screening: Why Assess Cutting Movement Quality?

Due to the plethora of negative implications associated with non-contact ACL injury,
being able to profile and classify athletes as potentially “high-risk” of injury is a crucial
process in ACL injury mitigation [1,49]. Side-step cutting (lateral foot plant) is an important
high-intensity action performed in numerous sports, and is a pivotal action performed
to evade opponents, penetrate defensive lines and gain territorial advantage in sports
such as rugby, American football, and handball [50–54]. However, because side-steps are
frequently performed movements in sports [50–53], and performed at high-intensity, and
thus have the potential to generate high impact forces and knee joint loads [31,33,55], they
are also commonly observed manoeuvres during non-contact ACL injury events [17–26].
For example, 60–67% of non-contact ACL injuries in rugby [18], American football [26],
and handball [19] occur during side-step cutting, while this manoeuvre is also linked
with non-contact ACL injury events in soccer [17], badminton [25], and Australian rules
football [21]. Consequently, screening tools and field-based interventions that can assist
in ACL injury risk mitigation is of great interest, particularly for practitioners working in
sports where cutting is the predominant mechanism of non-contact ACL injury.

The ability to predict non-contact ACL injury using screening tools is a contentious
issue [56–58]; however, much attention has been placed on screening and profiling move-
ment quality because of the adaptable nature of movement biomechanics, which in turn
is a modifiable ACL risk factor [1,43,45,57,59]. Additionally, creating “injury-risk pro-
files” through the identification of “high-risk” biomechanical and neuromuscular con-
trol deficits is considered important in terms quantifying relative injury risk [59–61]. For
example, “high-risk” postures include knee abduction angles (KAA–synonymous with
knee valgus angles) [33,40,42,62,63], lateral trunk flexion [31,42,64–66], extended knee pos-
tures [24,67,68], and hip internal rotation [40,41,63,69] are related to greater multiplanar
knee joint loads and subsequent ACL loading [46,70,71].

Figure 1 displays the screening process commonly adopted by practitioners, whereby
athletes are typically screened/profiled during a movement to assess their movement
quality, joint kinetics, or kinematics against pre-determined criteria or benchmarks. This
can be done via three-dimensional (3D) motion and ground reaction force (GRF) analysis
whereby joint kinetics and kinematics can be examined and surrogates of injury risk are
measured, creating an “injury-risk profile”, and subsequently used to infer potential injury
risk. For example, peak KAMs and peak KAAs can be measured during a COD or a drop
landing to identify athletes who display values greater than normative data or a threshold
to define “high-risk” [39,72,73]. Alternatively, qualitative screening of movement quality
may take place using high-speed two-dimensional (2D) cameras, whereby movement is
filmed (usually in the frontal and sagittal plane) and aberrant and “high-risk” movement
patterns can be identified via visual observations (i.e., visible knee valgus/lateral trunk
flexion). Qualitative assessments have been shown to reflect aspects of performance during
3D motion analysis, such as the Landing Error Scoring System (LESS) [74] and Qualitative
Analysis of Single Leg Loading (QASLS) [75].
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Figure 1. Screening movement quality process.

Irrespective of the screening method, athletes identified as potentially “higher-risk”
of injury can therefore be prescribed individualised interventions to address the specific
“high-risk” deficits [57,59]. This should theoretically reduce injury risk, and the training
intervention’s success is monitored be re-evaluating and screening movement quality
at the end of the intervention. Practitioners may continuously go through the process
multiple times (normally at the end of mesocycles) during the macrocycle. Therefore,
validated and reliable screening tools which assess movement quality are considered
integral for practitioners working in strength and conditioning, sports medicine, and sports
rehabilitation [59,76].

The optimal method for assessing movement kinetics and kinematics is 3D and GRF
analysis [1,57], whereby this approach is used to identify “high-risk” athletes that display
poor movement quality (i.e., knee valgus) and high multiplanar knee joint moments (surro-
gates of non-contact ACL injury risk) [59]. Although insightful and can indeed provide
detailed insight into athletes’ movement strategies and surrogates of injury risk, 3D motion
and GRF analysis does have its limitations including, cost, complexity, the time required to
perform mass screening, and the required laboratory facilities [1,57,72,77–79]; thus, restrict-
ing its use for practitioners in field-based environments. As such, qualitative screening
tools such as the LESS [74,80], Tuck Jump Assessment (TJA) [81–83], and QASLS [84,85]
have been developed, offering practitioners an easier and cost-effective method to evaluate
aberrant movement quality and postures associated with greater ACL injury risk, typically
during landing tasks. Although screening landing mechanics during vertical orientated
tasks is indeed applicable for jump-landing sports where the landing is the predominant
action associated with non-contact ACL injury [27,28,86,87], changing direction is a unilat-
eral and multiplanar movement which is biomechanically distinctly different to landing,
thus screening landing lacks specificity to directional changes [57,60,76]. This is pertinent
for practitioners who seek to profile athletes who participate in sports (handball, American
football, rugby, and soccer) where the side-step cutting is a predominant mechanism of
non-contact ACL injury [17–26]. Furthermore, mixed findings have been observed between
“high-risk” postures and knee joint loads between landing and cutting tasks [72,88–90],
with researchers demonstrating that “injury-risk profiles” are task dependent [72,91,92].
Therefore, it would be more suitable to assess movement mechanics associated with the
primary action of injury in that sport [49,57,60]. As such, there is a requirement for a
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specific field-based qualitative screening tool to evaluate and identify poor movement
quality and “high-risk” mechanics specifically for cutting.

3. Introducing the Cutting Movement Assessment Score (CMAS)

The CMAS, initially developed and validated in 2017 [76], is a 9-item qualitative
screening tool (Table 1) that assesses hip, knee, foot, and trunk postures during side-step
cutting relating to the technical determinants of peak KAMs [30,31,33,40–42,63–65,68,69,93]
(Figure 2) and non-contact ACL injury visual observations [19,24,26]. A detailed rationale
and operational definitions for these items are presented in a later section, but briefly these
items relate to penultimate foot contact (PFC) braking strategy, and trunk, hip, knee, and
foot postures and motions during the final “plant” step (Table 1). The CMAS involves
filming athletes (ideally ≥100 Hz) during a side-step cutting task (30–90◦) using cameras
placed approximately at hip height in the sagittal plane, frontal plane, and if possible with
an additional camera 20–45◦ relative to the cut. Video footage is retrospectively viewed
in video analysis software, and the athlete’s cutting trial is screened using the CMAS
screening tool. The majority (7-items) of the CMAS criteria follow a dichotomous scale
(yes or no), with lateral leg plant distance and frontal/transverse plane trunk position-
ing involving a description classification, with 3 and 4 possible descriptors, respectively
(Table 1). Athletes are awarded a score if they display any of the items of the CMAS criteria
(Table 1), and greater scores are typically indicative of suboptimal technique and greater
peak KAMs [55,76].

Table 1. Cutting Movement Assessment Score Tool (CMAS).

Recommended
Camera Variable Observation Score

Penultimate contact

Side/20–45◦ 1. Clear PFC braking strategy Y/N Y = 0/N = 1

Final Contact

Front/20–45◦ 2. Lateral leg plant distance (at initial contact) Wide, Moderate,
Narrow

Wide = 2,
Moderate = 1,

Narrow = 0

Front/20–45◦ 3. Hip in an initial internally rotated position (at initial contact) Y/N Y = 1/N = 0

Front/20–45◦ 4. Initial knee ‘valgus’ position (at initial contact) Y/N Y = 1/N = 0

All 3 5. Foot not in neutral foot position (at initial contact) Y/N Y = 1/N = 0

Front/20–45◦ 6. Frontal/transverse plane trunk position relative to intended direction
of travel (at initial contact and during WA)

L/TR, U, M L/TR = 2, U = 1,
M = 0

Side/20–45◦ 7. Trunk upright or leaning back throughout contact (at initial contact and
during WA)

Y/N Y = 1/N = 0

Side/20–45◦ 8. Limited knee flexion during final contact ≤ 30◦ (during WA) Y/N Y = 1/N = 0

Front/20–45◦ 9. Excessive knee ‘valgus’ motion (during WA) Y/N Y = 1/N = 0

Low CMAS ≤ 3 Moderate CMAS 4–6 High CMAS ≥ 7 Score /11

Key: PFC: Penultimate foot contact; WA: Weight acceptance; L: Lateral; TR: Trunk rotation; U: Upright; M: Medial; Y: Yes; N: No.

In the preliminary validation study by Jones et al. [76], using 3D motion and two
2D cameras (30 Hz) to record video data for qualitative screening, a strong association
between CMAS and peak KAM (ρ = 0.633; p < 0.001) was demonstrated during a 60–90◦

cut. More recently, Dos’Santos [55] expanded on the preliminary study by investigating
a greater sample size (41 vs. 8), using an extra camera placed 45◦ to the cut at a higher
sampling rate (100 Hz vs. 30 Hz), and also slightly modified the CMAS (provided extra
details) details to the CMAS screening tool. Substantiating the preliminary findings [76], a
very large (ρ = 0.796, p < 0.001) relationship was observed between CMAS and peak KAM
for participant average data [55]. In addition, athletes were divided into high (~7) and
low (~3) CMAS groups (top 33% and bottom 33%), where cutting kinetics and kinematics
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were compared. Importantly, athletes with higher CMASs demonstrated “higher-risk”
postures and knee joint loads connected with ACL injury risk compared to athletes with
lower CMASs. These included significantly (moderate to very large effect sizes) greater
mean vertical braking forces, greater peak KAAs, greater initial foot progression angles,
greater lateral foot plant distances, and greater knee flexion (KFM), knee internal rotation
(KIRM), and KAMs [55].

1 
 

 
Figure 2. Knee abduction moment (KAM) deterministic model. Adapted from [93]; GRF: Ground reaction force; COD:
Change of direction; ML: Medial-lateral; HBF: Horizontal braking force; FFC: Final foot contact.

Later analysis in the study by Dos’Santos et al. [55], revealed that when statistical
analysis was performed for all pooled trials, female trials, and male trials, large, large, and
very large associations were observed between CMAS and peak KAMs (Supplementary
Materials), respectively [93]. Additionally, in terms of cutting mechanics, greater peak and
mean vertical braking forces, greater peak and initial KAAs, and lower peak knee flexion
angle and range of motion, greater initial foot progression angles, greater lateral trunk
flexion, greater lateral foot plant distances, and greater multiplanar knee joint moments
were displayed during trials with higher CMASs (≥7) compared to lower CMASs (≤3) [93].
To the best of our knowledge, the LESS is the only other qualitative screening tool that
has been validated against the gold standard of 3D motion analysis with respect to knee
joint moments [74] and subsequent surrogates of ACL injury risk. Thus, the CMAS would
appear to have validity and be a rigorous enough method to potentially identify athletes
who generate high peak KAMs (and multiplanar knee joint loads) and potential ACL injury
risk. This method requires only three high-speed cameras and video analysis software
(which in most cases is free), which is a cost- and time-effective alternative to 3D motion
analysis, and is a field-based method for practitioners.

4. CMAS Methodological Procedures

The CMAS is applicable to side-step cuts of 30–90◦ with published literature using
the CMAS during 60–90◦ [76], 70◦ [94], and 90◦ cuts [55], and in unpublished observations,
we have also used the CMAS during 45◦ cuts. Ideally, CMAS screening should take place
on the same surface that the athlete performs their sport on (e.g., court, synthetic field-
turf, grass) and where possible athletes should wear sport-specific footwear to improve
ecological validity [95–97]. If athletes hold an implement in their sport (e.g., ball or racket),
practitioners may consider screening cutting trials where athletes hold the implement to
improve ecological validity. Anecdotally, we have had a positive experience screening
ball-carrying 45◦ cutting in rugby union players. Nevertheless, it is advised that athletes
tuck-in loose clothing, and ideally wear tight fitting clothing to make it easier to screen
and observe movement quality and postures. Although the aim of the CMAS is to profile
movement quality, practitioners may consider assessing performance using timing gates
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positioned at a start and finish line to obtain cutting completion time to monitor and
standardise performance.

Figure 3 provides a schematic representation of the CMAS for administering during
45◦, 70◦, and 90◦ cuts. As a minimum recommendation, practitioners are encouraged
to use 2 high-speed cameras for qualitative screening positioned on tripods placed at
approximate hip height at least 3 metres away in the frontal plane and 5 metres away in
the sagittal plane away from the cutting zone. However, to accommodate athletes who pre-
rotate during the cut, and to reduce parallax error, practitioners are strongly encouraged
to position an additional camera 20–45◦ to the cut to assist in more accurate qualitative
screening. Although published research placed the third camera at 45◦ [55,94], we have
recently had better observations of CMAS trials with a camera positioned at 20◦. This
approach has tended to reduce parallax error because the subjects who pre-rotate are more
perpendicular to the 20◦ camera in contrast to 45◦ camera observations. As such, this has
made subsequent screening of relevant criteria easier and is therefore our preferred method
going forward. As previously stated, practitioners should ideally use high-speed cameras
for qualitative screening, sampling at a minimum 100 Hz. Access to high-speed cameras for
practitioners is becoming increasingly accessible as most smartphone and tablet technology
have high-speed cameras as default features. Nonetheless, when using high-speed cameras
for the CMAS, practitioners should ensure that there is sufficient lighting to permit accurate
qualitative screening.
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It is encouraged that practitioners evaluate 2–3 cutting trials per limb for each athlete
during the cutting trials, typically during a cut which contains a 5-m entry and exit.
However, practitioners are free to adjust entry and exit distances at their own discretion
in context of their populations’ sporting demands. From our experience, we have been
able to collect CMAS video footage (along with completion times) for 6 trials (3 trials per
limb) in groups of athletes as large 12 in less than 15 min, highlighting the simplicity and
application for large mass screening in contract to 3D motion analysis.

Once video footage data are collected, video footage should ideally be viewed in
a software which enables videos to be played at various speeds, frame-by-frame, while
a software which can open multiple video windows, create photo-sequences, and also
contains drawing tools is also advantageous. We have used Kinovea software (0.8.15 for
Windows, Bordeaux, France), which is free, and we have found this software to be more
than adequate for qualitative screening purposes; however, practitioners are free to select
an alternative video software at their own discretion. From our experience, qualitative
screening of one trial takes ~3 min. However, given the subjective nature of qualitative
screening, it is strongly encouraged that practitioners within sports science, sports medicine,
and clinical departments are familiar and adequately trained using the CMAS and other
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qualitative screening tools. This is to ensure that high levels of intra- and inter-rater
reliability are obtained, and more importantly so that the athlete obtains accurate, consistent,
and reliable evaluations [57,58]. By this, it is strongly encouraged that practitioners within
their departments perform their own in-house training and collect pilot video footage
where they discuss and agree on “low-risk” and “high-risk” movement patterns. These
should be consensually agreed by all coaches, practitioners, and potential raters within the
department, team, or institution. Practitioners unfamiliar with the CMAS may consider
receiving training and education from practitioners’ experienced in qualitative screening
and knowledgeable in COD biomechanics. We have had recent success whereby the
lead researcher has facilitated a one hour-training session and created manuals for raters
outlining how to grade the cutting trials using the CMAS, and to establish and uniformly
agree on “low-risk” and “high-risk” movement patterns. Subsequently we have observed
high levels of intra- and inter-rater reliability [55,76,94].

5. CMAS Criteria Rationale and Operational Definitions

The purpose of the following section is to provide the rationale and operational
definitions for the 9-items of the CMAS.

5.1. Item (1) Clear PFC Braking Strategy

COD is multistep action with evidence indicating that the PFC is involved in decel-
eration prior to COD, and is a “preparatory step” [30,98]. A “large anterior placement
of the foot relative to centre of mass and backward inclination of the trunk relative to
planted foot” is considered to increase horizontal braking forces during the PFC, based
on research demonstrating a relationship between average horizontal GRF during PFC
and peak KAMs during the FFC [30,93]. Reducing the majority of momentum during the
PFC will reduce the braking requirements of the FFC, which may result in lower knee joint
loads and protect against non-contact injury [30,42,62]. Maximising braking forces during
the PFC is considered a safer strategy, as this braking is typically performed in the sagittal
plane whereby the GRF vector is more aligned with the knee joint centre, and importantly
the knee goes through substantially greater flexion as opposed to the FFC [99,100]. Figure 4
provides the operational definition and example yes and no “clear PFC braking strategy”
images to assist in qualitative screening.
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5.2. Item (2) Lateral Leg Plant Distance

A wide lateral leg plant is a major determinant of peak KAM during side-step cut-
ting [31,33,41,42,55,93]. This posture results in a more medial whole-body position with
respect to the foot, creating a large GRF acting laterally outside the knee. Subsequently,
this position results in a large moment arm between the perpendicular distance of the axis
of rotation (knee) to the force (acting outside the knee), creating greater KAMs [41,42,69].
Abducted hip positions are also commonly observed characteristics displayed during
visual inspection of non-contact ACL injuries during COD [20,25,26,101], and have also
been associated with greater KAMs [68,69]. Wide lateral leg plants are typically performed
to generate greater medio-lateral GRF, thus impulse, for acceleration into the new intended
direction [42,98,102,103]. Additionally, the lateral leg plant is also considered a “false” step
to deceive opponents [104]. Figure 5 provides the operational definition and example wide,
moderate, and narrow “lateral leg plant distance” images to assist in qualitative screening.

Biomechanics 2021, 2, FOR PEER REVIEW 9 
 

 

 
Figure 5. Operational definition and example images for CMAS item: lateral leg plant. 

5.3. Item (3) Hip in an Initially Rotated Position 
Internal hip rotation (anatomical rotation) is a contributing factor to dynamic knee 

valgus which contributes to a more medially positioned knee relative to the GRF vector, 
thus increase in moment arm distance and subsequent KAM [40,41,63,69]. Figure 6 pro-
vides the operational definition and example yes and no “hip in an initially rotated posi-
tion” images to assist in qualitative screening. 

5.4. Item (4) Initial Knee ‘Valgus’ Position 
Initial knee valgus position (anatomical rotation) is associated with peak KAMs dur-

ing cutting [33,40,42,62,63,93] and is considered a major determinant. An increased KAA 
at initial contact has an effect of placing the knee more medial to the resultant GRF vector, 
increasing the moment arm distance, leading to an increased KAM. Additionally, McLean 
et al. [105] reported a change in KAA of 2° can cause a 40 Nm increase in KAM (assuming 
a GRF of 2500 N), while greater KAAs were reported in female athletes who sustained an 
ACL injury compared to uninjured athletes [39]. Moreover, dynamic knee valgus is a com-
monly observed posture during non-contact ACL injuries during directional changes and 
landings [17,19–21,24–27,86,101]. Therefore, improving frontal plane knee control appears 
to be a worthwhile strategy to reduce ACL injury risk during side-stepping. Figure 6 pro-
vides the operational definition and example yes and no “initial knee valgus position” 
images to assist in qualitative screening. 
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5.3. Item (3) Hip in an Initially Rotated Position

Internal hip rotation (anatomical rotation) is a contributing factor to dynamic knee
valgus which contributes to a more medially positioned knee relative to the GRF vector, thus
increase in moment arm distance and subsequent KAM [40,41,63,69]. Figure 6 provides the
operational definition and example yes and no “hip in an initially rotated position” images
to assist in qualitative screening.

5.4. Item (4) Initial Knee ‘Valgus’ Position

Initial knee valgus position (anatomical rotation) is associated with peak KAMs
during cutting [33,40,42,62,63,93] and is considered a major determinant. An increased
KAA at initial contact has an effect of placing the knee more medial to the resultant GRF
vector, increasing the moment arm distance, leading to an increased KAM. Additionally,
McLean et al. [105] reported a change in KAA of 2◦ can cause a 40 Nm increase in KAM
(assuming a GRF of 2500 N), while greater KAAs were reported in female athletes who
sustained an ACL injury compared to uninjured athletes [39]. Moreover, dynamic knee
valgus is a commonly observed posture during non-contact ACL injuries during directional
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changes and landings [17,19–21,24–27,86,101]. Therefore, improving frontal plane knee
control appears to be a worthwhile strategy to reduce ACL injury risk during side-stepping.
Figure 6 provides the operational definition and example yes and no “initial knee valgus
position” images to assist in qualitative screening.
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5.5. Item (5) Foot Not in Neutral Foot Position

Greater initial foot progression angles (anatomical rotation) are associated with greater
KAMs [62,69], with a neutral foot position considered the safest strategy [31,62,69]. In-
ternally rotated foot positions during weight acceptance can result in a more medially
positioned knee relative to the GRF vector, thus increased moment arm distance and sub-
sequent KAM [62,69]. A neutral foot position would most likely result in forces being
attenuated in the sagittal plane utilising the large knee and hip extensor musculature, which
is potentially a safer strategy [62]. Equally, excessive foot external rotation increases the
susceptibility to eversion and pronation which could lead to knee valgus and tibial internal
rotation [106–108], thus ACL loading. External rotation of the foot has also been stated as
a visual characteristic observed during COD non-contact ACL injuries [26]. Figure 6 pro-
vides the operational definition and example yes and no “foot not in neutral foot position”
images to assist in qualitative screening.

5.6. Item (6) Frontal/Transverse Plane Trunk Position

The trunk contains approximately half of the body’s mass [109], and during cutting
the entire body’s mass must be balanced and supported on one leg, thus trunk control
and positioning is a critical factor influencing knee joint loads [87,110,111]. Lateral trunk
flexion [31,42,64] or trunk rotation [31,65] towards stance limb are major determinants of
peak KAM during COD. Laterally flexing the trunk (deviation of the trunk) or rotating the
trunk towards the plant leg shifts weight laterally, creating a more laterally directed GRF
vector, thereby increasing its moment arm relative to the knee joint centre, and therefore
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increasing the resultant KAM [31,32,42,64,65]. Conversely, trunk lean and rotation towards
the intended direction of travel shifts the GRF vector more in line with the knee joint centre,
thus decreasing the moment arm distance [65,66]. Prospective research has shown deficits
in trunk control and proprioception are associated with increased risk of non-contact
ACL injury [112,113], while lateral trunk flexion is also an observed visual posture during
non-contact ACL injuries during plant-and cut manoeuvres and landings [25,27,87].

Collectively, these findings suggest side-step techniques which encourage trunk lean
and rotation towards the intended direction of travel may potentially reduce knee joint
loading and subsequent risk of injury [31,32,42,64,65]. Computer simulations of side-
stepping have showed a reduction in knee valgus loading through shifting the whole-body
centre of mass more medially [66], while COD technique modification interventions which
focus on reducing lateral foot plant distances and maintaining an erect (frontal plane) trunk
posture was found to reduce KAMs [32]. Furthermore, from a performance perspective,
trunk lean and rotation towards the intended direction of travel is also associated with faster
COD performance [41,114,115]. Figure 7 provides the operational definition and example
lateral, trunk rotation, upright, and medial “frontal/transverse plane trunk position”
images to assist in qualitative screening.
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Figure 7. Operational definition and example images for CMAS item: frontal/transverse plane trunk position relative to
intended direction of travel.

5.7. Item (7) Trunk Upright or Leaning Back Throughout Contact

Trunk inclination (leaning back or upright) with limited hip flexion and trunk flexion
displacement during weight acceptance may increase the overall knee joint load, due
an increased lever arm of the trunk relative to the knee and increasing the centre of
mass distance from the base of support [116]. Some trunk flexion allows generation
of hip moments to help attenuate GRF during weight acceptance and thus, may lower
KAMs [62]. Increasing hip flexion and promoting a hip dominant strategy are involved
in GRF attenuation [117–119], energy dissipation [120,121], reducing loading rates [119]
and reducing knee joint loads [119,120,122,123] during high-impact tasks. Increasing hip
flexion increases the moment arm distance at the hip which creates a greater hip flexor
moment (utilising hip extensor musculature). This can have the effect of unloading the knee
by more evenly distributing loading proximally up the lower-limb chain [62,119,120,123],
thus reducing the demands for the knee. Figure 8 provides the operational definition and
example yes and no “trunk upright or leaning back throughout contact” images to assist in
qualitative screening.
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5.8. Item (8) Limited Knee Flexion

Extended knee postures with large anterior tibial shear can increase ACL
strain [124–127] and are also commonly observed visual characteristics of non-contact
ACL injury [17–21,23–26,86,101]. Moreover, stiffer landings and extended knee postures
can increase GRFs and are associated with increased risk of ACL injury [128]. Stiffer
weight acceptance strategies can increase impact GRFs [67,129,130], and greater GRFs are
associated with increased KAMs [63,69]. Lower knee flexion angles are also associated
with greater KAMs during COD [33,68]. Figure 8 provides the operational definition and
example yes and no “limited knee flexion” images to assist in qualitative screening.

5.9. Item (9) Excessive Knee ‘Valgus’ Motion during Weight Acceptance

The rationale for knee valgus was presented earlier (Item 4). Figure 8 provides the
operational definition and example yes and no “excessive knee valgus motion during
weight acceptance” images to assist in qualitative screening.
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5.10. CMAS Criteria: Considerations for Rearfoot, Midfoot, Forefoot Contact?

Although not a specific criterion on the CMAS qualitative tool, practitioners are
encouraged to monitor foot contact position during initial contact. Previous research has
reported rearfoot techniques evoke more extended, abducted knee positions, greater GRF,
and greater knee joint loads [33,131–134]. Additionally, heel strikes are commonly observed
characteristics of non-contact ACL injuries during COD [18,28], while an ACL case study
also reported a heel strike during COD [135]. However, an anterior placement of the
foot relative to the centre of mass is required to create posterior braking force, typically
characterised with a rearfoot technique to facilitate braking [136]. From our experience,
heel strikes during the FFC appear to be consequence of poor and ineffective PFC braking;
thus, resulting in a large anterior placement of the foot relative to the centre of mass
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to subsequently create posterior braking force. Moreover, although greater knee joint
loads are present with a rearfoot technique, from an ankle injury perspective, a rearfoot
contact results in a greater surface area, thus base of support and stability for changing
direction. This is particularly important for generating perpendicular force. Conversely,
a forefoot landing results in a reduced surface area and base of support which is most
likely suboptimal for perpendicular force application and ankle joint stability. Additionally,
it should be highlighted that a forefoot strategy increases (internal) ankle plantar-flexor
moment and gastrocnemius activity, which acts as an antagonist to the ACL, and may
contribute to ACL strain (tibial shear mechanism) [137–139].

6. Practical Applications: Interpreting CMAS Score and the CMAS Training
Recommendations Decision Tree

As strong relationships between CMAS and peak KAMs have been observed [55,76,93],
a higher total score is generally indicative of suboptimal technique and greater non-contact
ACL injury risk. Additionally, “higher-risk” cutting postures connected with ACL injury
risk were demonstrated by participants and trials with “high” CMASs (~7) compared
to participants and trials with “low” CMASs (~3) [55,93]. As such, practitioners can use
scores of ≥7, 4–6, and ≤3 as initial benchmarks to classify athletes with high, moderate,
and low CMASs [55,93], respectively. However, practitioners should note that suboptimal
and unsafe technique may still be displayed during trials with low CMASs; therefore, it is
advised to focus on the CMAS criteria where athletes scored deficits [57,76]. For example,
an athlete with a low CMAS may still display “high-risk” cutting deficits, such as knee
valgus, lateral trunk flexion, limited knee flexion, or hip internal rotation. Therefore,
in this scenario, the athlete would still warrant specific injury risk mitigation training
and conditioning. In addition, it is worth noting that some CMAS criteria are associated
with faster performance [41,43,67,70]. For instance, a wide lateral leg plant is displayed
to generate greater medio-lateral propulsive forces and subsequent exit velocity [41,42],
while reduced knee flexion is associated with shorter ground contact time [43,67]. Thus,
practitioners must be mindful and acknowledge the trade-off between knee joint loading
(injury risk) and performance when screening and modifying cutting mechanics.

A low CMAS score generally indicates an ability to performance a cutting task well
against the prescribed CMAS criteria, in a closed, controlled environment. Further work
is needed to assess both scoring during tasks in a sport-specific, open skill environment
to determine if performance transitions (scores) to these environments. Additionally, it
is worth highlighting that the CMAS is based on postures associated with ACL injury
risk, but the CMAS is indicating relative risk of injury and we are by no means are stating
that athletes with greater scores will definitely sustain an ACL injury. Nevertheless,
practitioners are recommended to use the CMAS as a regular monitoring tool to assist
in identifying “high-risk” cutting deficits in their athletes. This can be used to inform
and help develop individualised training programmes to modify the specific deficits and
mitigate potential ACL injury risk [59,60,140]. Readers are encouraged to read specific
reviews regarding training strategies to mitigate non-contact ACL injury [45,46,48,141,142];
thus, a brief overview is presented in the CMAS training recommendations decision tree
(Figure 9).
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7. Conclusions

ACL injuries are a serious, debilitating injury, thus mitigating non-contact ACL in-
juries, particularly during cutting is of high interest. This article provides a comprehensive
overview of the CMAS outlining the rationale, operational definitions, and methodological
procedures for collecting CMAS video footage and screening cutting movement quality to
assist in ACL injury mitigation. The CMAS is a validated and reliable qualitative screening
tool for evaluating side-step cutting movement quality. By using only three high-speed
cameras and free video analysis software, the CMAS provides a simple to administer,
cost-effective field-based screening tool to identify athletes who display “high-risk” cutting
mechanics and generate high knee joint loads. Therefore, practitioners are encouraged to
include the CMAS as part of their injury-risk profiling testing, especially for those working
in sports where cutting are prevalent actions. Practitioners can therefore directly iden-
tify specific deficits and “high-risk” athletes to create individualised neuromuscular and
biomechanical training programmes and monitor the effectiveness of such programmes by
revaluating CMAS performance [94].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomechanics1010007/s1, Figure S1. Relationship between CMAS and peak KAMs (pKAM)
for pooled (A), female (B), and male (C) CMAS trials. Adapted from [141].
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