847 research outputs found

    The Proton Spin and Flavor Structure in the Chiral Quark Model

    Full text link
    After a pedagogical review of the simple constituent quark model and deep inelastic sum rules, we describe how a quark sea as produced by the emission of internal Goldstone bosons by the valence quarks can account for the observed features of proton spin and flavor structures. Some issues concerning the strange quark content of the nucleon are also discussed.Comment: 59 pages with table of contents, Lecture delivered at the Schladming Winter School (March 1997), to be published by Springer-Verlag under the title "Computing Particle Properties" (eds. C. B. Lang and H. Gausterer

    Schottky barrier heights at polar metal/semiconductor interfaces

    Full text link
    Using a first-principle pseudopotential approach, we have investigated the Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100) junctions, and their dependence on the semiconductor chemical composition and surface termination. A model based on linear-response theory is developed, which provides a simple, yet accurate description of the barrier-height variations with the chemical composition of the semiconductor. The larger barrier values found for the anion- than for the cation-terminated surfaces are explained in terms of the screened charge of the polar semiconductor surface and its image charge at the metal surface. Atomic scale computations show how the classical image charge concept, valid for charges placed at large distances from the metal, extends to distances shorter than the decay length of the metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure

    Near infrared reflectance spectroscopy for the determination of free gossypol in cottonseed meal

    Get PDF
    Gossypol is a toxic polyphenolic compound produced by the pigment glands of the cotton plant. The free gossypol content of cottonseed meal (CSM) is commonly determined by the American Oil Chemists’ Society (AOCS) wet chemistry method. The AOCS method, however, laboratory-intensive, time-consuming, and therefore, not practical for quick field analyses. To determine if the free gossypol content of CSM could be predicted by near infrared reflectance spectroscopy (NIRS), CSM samples were collected from all over the world. All CSM samples were ground and a portion of each analyzed for free gossypol by the AOCS procedure (reference data) and by NIRS (reflectance data). Both reflectance and reference data were combined in calibration. The coefficient of determination (r2) and standard error of prediction (SEP) were used to assess the calibration accuracy. The r2 was 0.728, and the SEP was 0.034 for the initial calibration that included samples from all over the world. However, the r2 and SEP improved to 0.921 and 0.014, respectively, if the calibration was made using CSM samples only from the United States. These results indicate that a general prediction equation can be developed to predict the free gossypol content of CSM by NIRS. From a practical standpoint, NIRS technology provides a method for quickly assessing whether a particular batch of CSM has a free gossypol content low enough to be suitable for use in poultry diets.This research was supported in part by grant 05-635GA from the Georgian Cotton Commission, Perry, G

    Ocean forests: breakthrough yields for macroalgae

    Get PDF
    The US Department of Energy Advanced Research Projects Agency - Energy (ARPA-E) MacroAlgae Research Inspiring Novel Energy Research (MARINER) program is encouraging technologies for the sustainable harvest of large funding research of macroalgae for biofuels at less than $80 per dry metric ton (DMT). The Ocean Forests team, led by the University of Southern Mississippi, is developing a complete managed ecosystem where nutrients are transformed and recycled. The team’s designs address major bottlenecks in profitability of offshore aquaculture systems including economical moored structures that can withstand storms, efficient planting, managing and harvesting systems, and sustainable nutrient supply. The work is inspired by Lapointe who reported yields of Gracilaria tikvahiae equivalent to 127 DMT per hectare per year (compared with standard aquaculture systems in the range of 20 to 40 DMT/ha/yr). This approach offers the potential for breakthrough yields for many macroalgae species. Moreover, mini-ecosystems in offshore waters create communities of macroalgae, shellfish, and penned finfish, supplemented by visiting free-range fish that can increase productivity, produce quality products, and create jobs and income for aquafarmers. Additional benefits include reduced disease in fish pens, cleaning contaminated coastal waters, and maximizing nutrient recycling. Cost projections for a successful, intensive, scaled system are competitive with current prices for fossil fuels

    Global Study of Nuclear Structure Functions

    Full text link
    We present the results of a phenomenological study of unpolarized nuclear structure functions for a wide kinematical region of x and Q^2. As a basis of our phenomenology we develop a model which takes into account a number of different nuclear effects including nuclear shadowing, Fermi motion and binding, nuclear pion excess and off-shell correction to bound nucleon structure functions. Within this approach we perform a statistical analysis of available data on the ratio of the nuclear structure functions F_2 for different nuclei in the range from the deuteron to the lead. We express the off-shell effect and the effective scattering amplitude describing nuclear shadowing in terms of few parameters which are common to all nuclei and have a clear physical interpretation. The parameters are then extracted from statistical analysis of data. As a result, we obtain an excellent overall agreement between our calculations and data in the entire kinematical region of x and Q^2. We discuss a number of applications of our model which include the calculation of the deuteron structure functions, nuclear valence and sea quark distributions and nuclear structure functions for neutrino charged-current scattering.Comment: 67 pages, 18 figures (v3: updated text and references, a new section with discussion about relation between off-shell effect and modification of the nucleon size in nuclei, accepted for publication in Nucl. Phys. A

    CP asymmetries in the supersymmetric trilepton signal at the LHC

    Full text link
    In the CP-violating Minimal Supersymmetric Standard Model, we study the production of a neutralino-chargino pair at the LHC. For their decays into three leptons, we analyze CP asymmetries which are sensitive to the CP phases of the neutralino and chargino sector. We present analytical formulas for the entire production and decay process, and identify the CP-violating contributions in the spin correlation terms. This allows us to define the optimal CP asymmetries. We present a detailed numerical analysis of the cross sections, branching ratios, and the CP observables. For light neutralinos, charginos, and squarks, the asymmetries can reach several 10%. We estimate the discovery potential for the LHC to observe CP violation in the trilepton channel.Comment: 39 pages, 8 figures, version to appear in EPJC, discussion(s) added, typo in (D.79), (D.118) corrected, new Fig. 7; The European Physical Journal C, Volume 72, Issue 3, 201

    The chemical enrichment of the ICM from hydrodynamical simulations

    Get PDF
    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 18; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Adding tree rings to North America's National Forest Inventories: an essential tool to guide drawdown of atmospheric CO2

    Get PDF
    Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.Published versio

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given
    • 

    corecore