49 research outputs found

    Forty years of durability assessment of nuclear waste glass by standard methods

    Get PDF
    Standard methods to assess the durability of vitrified radioactive waste were first developed in the 1980’s and, over the last 40 years, have evolved to yield a range of responses depending on experimental conditions and glass composition. Mechanistic understanding of glass dissolution has progressed in parallel, enhancing our interpretation of the data acquired. With the implementation of subsurface disposal for vitrified radioactive waste drawing closer, it is timely to review the available standard methodologies and reflect upon their relative advantages, limitations, and how the data obtained can be interpreted to support the post-closure safety case for radioactive waste disposal

    Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy

    Full text link
    The cyclic deformation behavior of cryomilled (CM) AA5083 alloys was compared to that of conventional AA5083-H131. The materials studied were a 100 pct CM alloy with a Gaussian grain size average of 315 nm and an alloy created by mixing 85 pct CM powder with 15 pct unmilled powder before consolidation to fabricate a plate with a bimodal grain size distribution with peak averages at 240 nm and 1.8 Όm. Although the ultra-fine-grain (UFG) alloys exhibited considerably higher tensile strengths than those of the conventional material, the results from plastic-strain-controlled low-cycle fatigue tests demonstrate that all three materials exhibit identical fatigue lives across a range of plastic strain amplitudes. The CM materials exhibited softening during the first cycle, similar to other alloys produced by conventional powder metallurgy, followed by continual hardening to saturation before failure. The results reported in this study show that fatigue deformation in the CM material is accompanied by slight grain growth, pinning of dislocations at the grain boundaries, and grain rotation to produce macroscopic slip bands that localize strain, creating a single dominant fatigue crack. In contrast, the conventional alloy exhibits a cell structure and more diffuse fatigue damage accumulation

    Maximal L p -regularity for the Laplacian on Lipschitz domains

    Get PDF
    We consider the Laplacian with Dirichlet or Neumann boundary conditions on bounded Lipschitz domains ?, both with the following two domains of definition:D1(?) = {u ? W1,p(?) : ?u ? Lp(?), Bu = 0}, orD2(?) = {u ? W2,p(?) : Bu = 0}, where B is the boundary operator.We prove that, under certain restrictions on the range of p, these operators generate positive analytic contraction semigroups on Lp(?) which implies maximal regularity for the corresponding Cauchy problems. In particular, if ? is bounded and convex and 1 < p ? 2, the Laplacian with domain D2(?) has the maximal regularity property, as in the case of smooth domains. In the last part,we construct an example that proves that, in general, the Dirichlet–Laplacian with domain D1(?) is not even a closed operator

    Quantum field theory in static external potentials and Hadamard states

    Get PDF
    We prove that the ground state for the Dirac equation on Minkowski space in static, smooth external potentials satisfies the Hadamard condition. We show that it follows from a condition on the support of the Fourier transform of the corresponding positive frequency solution. Using a Krein space formalism, we establish an analogous result in the Klein-Gordon case for a wide class of smooth potentials. Finally, we investigate overcritical potentials, i.e. which admit no ground states. It turns out, that numerous Hadamard states can be constructed by mimicking the construction of ground states, but this leads to a naturally distinguished one only under more restrictive assumptions on the potentials.Comment: 30 pages; v2 revised, accepted for publication in Annales Henri Poincar

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore