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Quantum Field Theory in Static External
Potentials and Hadamard States
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Abstract. We prove that the ground state for the Dirac equation on
Minkowski space in static, smooth external potentials satisfies the
Hadamard condition. We show that it follows from a condition on the
support of the Fourier transform of the corresponding positive frequency
solution. Using a Klein space formalism, we establish an analogous result
in the Klein–Gordon case for a wide class of smooth potentials. Finally,
we investigate overcritical potentials, i.e. which admit no ground states.
It turns out, that numerous Hadamard states can be constructed by mim-
icking the construction of ground states, but this leads to a naturally dis-
tinguished one only under more restrictive assumptions on the potentials.

1. Introduction

It has been realized a long time ago that quantum field theory in the presence
of external, classical potentials has much in common with quantum field the-
ory on curved backgrounds at its very foundations. In both theories, the lack of
Poincaré invariance in the free equations of motion deprives us of a seemingly
natural way to specify what should a ‘vacuum state’ be. In some situations,
successful and mathematically appealing resolutions of this problem have been
found nevertheless and the quantized non-interacting theory has been raised
to a fully satisfactory level.

This includes the Dirac equation on Minkowski space coupled to static
external potentials (i.e. not depending on time). For a wide range of physically
relevant potentials (including arbitrarily strong, smooth ones), it is possible to
bring the minimally coupled Dirac equation to the form of an evolution equa-
tion governed by a self-adjoint operator on a Hilbert space—the ‘minimally
coupled Dirac Hamiltonian’ h. Similar statements are valid for the Dirac equa-
tion on a static, globally hyperbolic, smooth manifold [30]. The construction
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of the fermionic Fock space and the implementation of the dynamics mimics
the procedure used in the absence of potentials [49]. In fact, this amounts to
performing what one calls positive energy quantization of a dynamics and is
described in many textbooks and articles with varying degree of generality, see
e.g. [13,17]. A key ingredient are spectral projections on the positive and neg-
ative frequency part of the spectrum of h, which enter the construction of the
one-particle structure. The outcome includes a ground state, which replaces
the notion of a ‘vacuum’ and is invariant under the dynamics, implemented as
a one-parameter group of unitaries with positive generator.

The development of QFT on generic globally-hyperbolic space-times led
to a proposal based on a different mathematical setup [59]. This general quan-
tization program relies on finding bi-solutions (or more generally, bi-parame-
trices) of the free equations of motion with the same singular structure as the
positive-frequency solution on flat Minkowski space. Then, they are used to
construct quasi-free states, called Hadamard states, and the requirement on
the singularities of the underlying solutions is called the Hadamard condition.
A breaking point was the observation of Radzikowski [44], which allowed to
rephrase this condition in the language of microlocal analysis, using the notion
of the wave front set. Ultimately, it turned out that this provides the right basis
to construct interacting quantum field theories as well [7]. The formulation of
the Hadamard condition, originally set for scalar fields, has been extended to
the spinor case by Kratzert [33], Hollands [27], Sahlmann and Verch [53] (see
also the comments in [48]). It is worth emphasizing that physically, the Had-
amard condition (called also ‘microlocal spectrum condition’) is interpreted as
an asymptotic positivity condition on the energy and as such it does not fix the
state uniquely. In general, there is no distinguished one unless the space-time
has specific symmetries or asymptotic symmetries (see [20] for asymptotically
flat spacetimes).

It is of high importance to know what is the exact relation between
the two existing approaches to quantization. More specifically, the following
question arises: Do ground states in non-interacting QFT satisfy the Hadam-
ard condition? This is true for the Dirac and Klein–Gordon equation on flat
Minkowski space under the assumption that no external potentials are pres-
ent. It has been proved by Sahlmann and Verch [52,53] that this remains true
on stationary space-times. Later, Marecki [39] argued that the approach for
QFT in generic curved backgrounds can be fully adapted to QFT in external
potentials and initiated such a program, but left the question of Hadamard
condition for ground states unsolved. The main aim of this paper is precisely
to solve this problem. We prove that ground states for the Dirac equation
on Minkowski space with static, smooth potentials do satisfy the Hadamard
condition, as conjectured by Marecki.

For the Klein–Gordon equation, the situation is yet more complicated.
The problem is similar to the Dirac equation case, except that in order to get
a ground state, restricting to static potentials and stationary metric is not
sufficient. Ground states do not exist if the electric potential exceeds some
critical value, or if the metric is ‘superradiant’, see for instance the appendix
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in [22] for a detailed description (and [34] specifically for superradiant black-
hole spacetimes). Phenomena characteristic for those situations are altogether
named Klein paradox and stem from the impossibility of describing the classi-
cal dynamics as a unitary group. In this paper, we are interested in both the
subcritical and overcritical cases. We show that ground states for the Klein–
Gordon equation on Minkowski space with subcritical, static, smooth poten-
tials satisfy the Hadamard condition. For overcritical potentials, we still find
families of Hadamard states and investigate if there is a natural way of distin-
guishing one of them. The main difference between the states obtained in the
subcritical and the overcritical case is that the latter are not faithful ones.

Before displaying our results in more detail, let us first point out the
main motivations behind attempts at merging techniques from QFT on
curved backgrounds and QFT in external potentials. We would like to stress
that in each of the possible applications we mention, existence of distinguished
Hadamard states is a question of critical importance and our result for static
potentials provides a first answer to it.

• Adaptation of causal renormalization to QFT in curved space-time has
been an astonishing success of perturbative theory [7]. The powerful tools
used there can be adapted to QFT in external potentials (see [19] for ren-
ormalization of QED in static external fields) and in particular allow for
a local definition of Wick and time-ordered products [39]. It is desirable
to extend this formalism to more general cases and make the connection
with commonly used techniques in QFT in strong external potentials,
such as Furry picture QED [21,41], and explain to what extent they can
be mathematically well-posed.

• Renormalizability of field theories on non-commutative Moyal space is
another related problem, where external potentials and microlocal prop-
erties of associated distributions come into play. In the Euclidean for-
malism, a successful renormalization program has been established for
specific models involving a potential term, and their Minkowskian ana-
logues are thus natural candidates for renormalizable theories. A direct
transition from the Euclidean to the Minkowski signature by a Wick rota-
tion has been shown to be problematic for vanishing potentials [6] and the
general case is unknown. Consequently, one is interested in the question
whether the Minkowskian versions of the models with potential terms can
be consistently treated by extending the causal renormalization machin-
ery, not referring to Euclidean techniques in the process. Unfortunately,
defining a meaningful quantum field theory in an external potential, such
as the one suggested by the Grosse–Wulkenhaar model, poses difficulties
appearing already at the non-interacting level, due to the ‘superradiant’
nature of the potential and its dependence on time. Even disregarding the
peculiarities of the non-interacting theory, computations in perturbative
theory are plagued by divergences, which can be traced back to analytic
properties of the solutions of the Klein–Gordon equation with external
potential [60]. Therefore, a systematic study of the latter is needed.
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• Ultimately, QFT in external potentials may prove to be an impor-
tant guide in understanding back-reaction effects of quantum fields on
curved backgrounds. The existing proposal for describing back-reac-
tion on curved backgrounds, formulated by Wald in [58], is based on
the so-called semi-classical Einstein equation, involving the renormalized
quantum stress-energy tensor :Tμν(x): (see [29,40] for an up to date dis-
cussion) evaluated on a suitable state and describing its influence on the
background metric. This concept can be modified to describe back-reac-
tion of quantum fields on external potentials, by looking for solutions
of semi-classical Maxwell equations, involving the renormalized quantum
current operator :jμ(x): [39] and describing its influence on the back-
ground electromagnetic field. Such a back-reaction theory should approx-
imate the fully quantized theory, specifically spinor or scalar QED, with
a better accuracy than QFT in fixed external backgrounds. The verifi-
cation of this claim can provide useful indication for the back-reaction
theory based on the semi-classical Einstein equation, which is believed to
be a first approximation of quantum gravity.

Although it seems difficult to compare such a semi-classical QED
with its fully quantized counterpart and even with other back-reaction
approximations such as the mean field method [32], decisive answers could
be provided by experimental data. Electromagnetic fields strong enough
to carry sizable back-reaction effects are expected to be produced in a
laboratory setup in the near future [45,47].

The content of this paper can be summed up as follow.
In Sect. 2, we start by introducing the basic definitions and notations

relevant for the flat static case. Then, we show that the Hadamard condition
in the flat, static case is implied by an asymptotic condition on the support
of the Fourier transform of the candidates for positive and negative frequency
solutions (Theorem 2.8). The proof relies on well-known or elementary facts on
the wave front set and no pseudo-differential operator techniques are directly
employed.

In Sect. 3, we consider the Dirac case and rephrase the usual construc-
tion of ground states in terms of positive and negative frequency solutions
S+, S−. We show that they satisfy the condition from Sect. 2 and positivity
(Proposition 3.3). The support property of the Fourier transforms of S+, S− is
part of the folklore knowledge and is easy to show, but in view of Sect. 2 this
suffices us to prove Marecki’s conjecture, i.e. that S+ satisfies the Hadamard
condition.

Section 4 deals with the Klein–Gordon equation. Motivated by the results
of Sect. 3, we follow as closely as possible the construction used for the Dirac
case. The role of the analogue of the minimally coupled Dirac Hamiltonian is
then played by a Krein self-adjoint operator b in a Krein space (called also
‘Hilbert space with indefinite inner product’ in the physics literature). We
use extensively results due to Langer et al. [37] and Gérard [24] for the oper-
ator b to construct ground states in the subcritical case. This construction
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differs from what is usually presented in the literature and although it leads
to the same result, it has the advantage of being extendible to the overcriti-
cal case with almost no change. In the overcritical case, the outcome is not a
ground state, but a family of Hadamard states instead. We show that under
additional restrictions on the potentials, there is a natural way of specify-
ing a distinguished Hadamard state (Corollary 4.24). We then discuss second
quantization using the obtained Hadamard states. An outlook is presented in
Sect. 5.

In Appendix A, the definition of the wave front set and its basic properties
are briefly recalled.

1.1. Notations

E will always denote a finite dimensional vector space and L(E) the space
of its endomorphisms. The space of E-valued test functions in R

p is denoted
C∞

c (Rp, E) and its dual D(Rp, E)′ or D′(Rp) if E = C. The space of Schwartz
functions is denoted S(Rp, E), its dual S(Rp, E)′. We often use a function-like
notation u(x) to denote a distribution u ∈ D(Rp, E)′, whereas 〈u, ϕ〉 (or alter-
natively

∫
Rp u(x)ϕ(x)dx) is used to denote the action of u on a test function

ϕ. The support of u ∈ D(Rp, E)′ is denoted suppu.
We denote R

1,d the Minkowski space with d ≥ 1 spatial dimensions, sig-
nature (−,+, . . . ,+), and set n := 1 + d. The causal future (resp. causal past)
of K ⊂ R

1,d is denoted J+(K) (resp. J−(K)). The space of smooth spacelike
compact functions is by definition

C∞
sc (R1,d, E) := {f ∈ C∞(R1,d, E) : ∃K ⊂ R

1,d

compact s.t. suppf ⊂ J+(K) ∪ J−(K)}.
Unless Specified otherwise, we always consider differential operators with

smooth coefficients. Often, we write P(x) for a differential operator acting in
the variables x.

For a Hilbert space H, we denote B(H) the set of bounded operators on
H and 1 ∈ B(H) the identity operator. Given a linear operator a in H, D(a)
denotes its domain, Ran a its range, σ(a) its spectrum, σp(a) its point spec-
trum and σess(a) its essential spectrum.

J ⊂ R will always denote a finite union of intervals. We denote J its
closure, ∂J its boundary and 1J its characteristic function.

2. Hadamard Condition in the Static Case

2.1. Causal Propagator

Let E be a finite dimensional vector space. We introduce basic notions for
hyperbolic differential operators on R

1,d with time-independent coefficients.

Definition 2.1. Let D : C∞(R1,d, E) → C∞(R1,d, E) be a differential operator
and denoteD∗ its formal adjoint. Distributions S̃ret/adv ∈ D(R1,d×R

1,d, L(E))′
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are called retarded/resp. advanced fundamental solutions for D, if they satisfy

(1) D(x)S̃ret/adv(x, x′) = δ(x, x′) · 1,

(2) D∗
(x′)S̃ret/adv(x, x′) = δ(x, x′) · 1,

(3) supp S̃ret/adv ⊂ {(x, x′) : x ∈ J+/−(x′)},
where 1 is the identity in L(E).

Definition 2.2. A differential operator P : C∞(R1,d, E) → C∞(R1,d, E) is said
to be normally hyperbolic of order two in R

1,d, if it is of the form ∂μ∂
μ +

Kμ(x)∂μ + L(x) for some Kμ, L ∈ C∞(R1,d, E), μ = 1, . . . , n.

Definition 2.3. We say that a hyperbolic differential operator D : C∞

(R1,d, E) → C∞(R1,d, E) is prenormally hyperbolic if there exists a hyperbolic
differential operator D′ such that both DD′ and D′D are normally hyperbolic
of order two.

By convention, we allow D′ to be of order zero, so that normally hyper-
bolic operators of order two are prenormally hyperbolic in the sense above.
Note that this differs from the definition proposed in [43]. If D is pre-
normally hyperbolic, one can use the existence and uniqueness theorem of
retarded/advanced fundamental solutions available for normally hyperbolic
operators DD′ and D′D to construct unique retarded/advanced fundamental
solutions for D. This has been performed by Dimock [18] for the case of the
Dirac equation in globally-hyperbolic space-times and generalized by Mühlhoff
[43].

Theorem 2.4. Let D be a prenormally hyperbolic differential operator. Then,
S̃ret/adv(x, x′) := D′

(x)Δ̃ret/adv(x, x′) ∈ D(R1,d × R
1,d, L(E))′ is the unique

retarded/advanced fundamental solution for D, where Δ̃ret/adv ∈ D(R1,d ×
R

1,d, L(E))′ is the retarded/advanced fundamental solution for the normally
hyperbolic operator of order two DD′.

Proof. It suffices to follow step by step the proof of [43, Theorem 1]. It is
assumed there that D is of order 1, but this is in fact not necessary. �

The causal propagator S̃ is defined as S̃ := S̃ret − S̃adv.
The theorem below, characterizing the wave front set of S̃, is a straight-

forward consequence of Theorem A.4 and [8, Theorem 4.16]. For the definition
of the wave front set and its properties, see Appendix A.

Theorem 2.5. Let S̃ ∈ D(R1,d × R
1,d, L(E))′ be the causal propagator for a

prenormally hyperbolic operator D : C∞(R1,d, E) → C∞(R1,d, E). Then,

WF(S̃) = {(x, x′, k,−k) : x 
= x′, x− x′

and k lightlike, k coparallel to x− x′} ∪ {(x, x, k,−k) : k lightlike, k 
= 0}.
In this paper, we are interested in the case when D(x) = D(t,x) is a dif-

ferential operator with coefficients not depending on t. Then, S̃(t,x, t′,x′) ∈
D(R1,d × R

1,d, L(E))′ depends on the time coordinates via the difference t− t′
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only. More precisely, S̃(t,x, t′,x′) is the pullback of a distribution in D(R1+2d,
L(E))′ under the map

R
1,d × R

1,d � (t,x, t′,x′) �→ τ(t,x, t′,x′) := (t− t′,x,x′) ∈ R
1+d+d (2.1)

and we denote this distribution S(t,x,x′). We also call it the causal propagator.
Its wave front set is given by the relation

WF(S̃) = {(t,x, t′,x′; ξ,k,−ξ,k′) : (t− t′,x,x′; ξ,k,k′) ∈ WF(S)}.
Going further with a time-translation invariant convention, we say that

a distribution u ∈ D(R1+2d, L(E))′ is a bi-parametrix for D(x), if

D(t,x)u(t− t′,x,x′) = f(t, t′,x,x′), D(t′,x′)u(t− t′,x,x′) = g(t, t′,x,x′).

for some f, g ∈ C∞(R1,d, E), and a bi-solution if f = g = 0.
The frequency part of the wave front set of a solution of a normally

hyperbolic differential operator is contained in the light cone (as follows from
Theorem A.4), which translated to a bi-solution u for D means in our conven-
tion that

(t,x,x′; ξ,k,k′) ∈ WF(u) ⇒ ξ2 − k2 = ξ2 − k′2 = 0. (2.2)

Let us remark that this excludes points with ξ = 0 from the wave front set,
since it would imply k2 = k′2 = 0 and points of the form (t,x,x′; 0, 0, 0) are
not in WF(u) by definition.

2.2. Hadamard Condition in the Static Case

Assume D : C∞(R1,d, E) → C∞(R1,d, E) is a prenormally hyperbolic differen-
tial operator with coefficients not depending on time. Let S ∈ D(R1+2d, L(E))′

be the causal propagator for D and S+ a bi-parametrix for D.
In the static case, employing the notations introduced before, the

Hadamard condition can be written as follows:

Definition 2.6. S+ ∈ D(R1+2d, L(E))′ is said to satisfy the Hadamard condition
if

WF(S+) = WF(S) ∩K+,

where K+ := R
1+2d × (0,∞) × R

2d.

We often call bi-solutions satisfying the Hadamard condition positive-
frequency solutions. Of particular interest are bi-solutions or bi-parametrices
satisfying additionally a positivity condition, which ensures that they deter-
mine unambiguously a quasi-free state (called Hadamard state) on an adequate
∗-algebra of CCR/CAR relations, as explained for instance in [8]. Throughout
this paper, we concentrate on such bi-solutions rather than on the correspond-
ing states.

A key point in our investigations is the observation, that the static
Hadamard condition is implied by a stronger condition on the support of the
Fourier transform of S+ and S−. This will turn out to be easily proved to hold
in our case of interest.
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We will consider distributions contained in the topological tensor prod-
uct S ′(R)⊗̂D(R2d, L(E))′ ⊂ D(R1+2d, L(E))′, so that it makes sense to apply
a Fourier transform in the first argument (thanks to continuity of the Fourier
transform in S ′(R)).

Definition 2.7. Let S ∈ D(R1+2d, L(E))′ be the causal propagator for D and let
S+ ∈ S ′(R)⊗̂D(R2d, L(E))′ be a bi-parametrix for D. We say that S+ satisfies
the static asymptotic spectral condition, if

S = S+ + S− + S0, (2.3)

where S0 ∈ C∞(R1+2d, L(E)), S− ∈ S ′(R)⊗̂D(R2d, L(E))′ is a bi-parametrix
for D and
1. supp(F0S+) ⊂ [α,∞) × R

2d for some α ∈ R,
2. supp(F0S−) ⊂ (−∞, β] × R

2d for some β ∈ R,
where F0 is the Fourier transform in the first variable.

Note that we do not impose α ≥ β. Therefore, the situation described
by this condition can be understood as a splitting of S into a positive and
negative frequency part in an asymptotic sense, i.e. accurate for sufficiently
high frequencies.

Theorem 2.8. Let D : C∞(R1,d, E) → C∞(R1,d, E) be a prenormally hyper-
bolic differential operator (in the sense of Definition 2.3) with coefficients not
depending on time and let S+ ∈ D(R1+2d, L(E))′ be a bi-parametrix for D.
Then, the static asymptotic spectral condition implies the Hadamard condi-
tion.

In the proof, we make use of the following lemma due to L. Hörmander.

Lemma 2.9 ([28], Lemma 8.1.7). If u ∈ S ′(Rp), then WF(u) ⊂ R
p × F , where

F :=
{

lim
j→∞

αjxj : xj ∈ supp(Fu) ⊂ R
p, αj > 0, lim

j→∞
αj = 0

}

and F denotes the Fourier transform in R
p.

As a corollary, we get:

Lemma 2.10. Let u ∈ S ′(R)⊗̂D(Rq, E)′ and denote F0u its Fourier transform
in the first argument. Then,

supp(F0u) ⊂ [α,∞) × R
q for some α ∈ R ⇒ WF(u) ⊂ K+ ∪K0, (2.4)

supp(F0u) ⊂ (−∞, β] × R
q for some β ∈ R ⇒ WF(u) ⊂ K− ∪K0, (2.5)

where K± = R
1+q × ((0,±∞) × R

q), K0 := R
1+q × ({0} × R

q).

Proof. Assume u ∈ S(R1+q, E)′. We can also assume without loss of generality
E = C. Then supp(F0u) ⊂ [α,∞)×R

q implies supp(Fu) ⊂ [α,∞)×R
q, where

F denotes the Fourier transform in all the 1 + q variables. Claim (2.4) (and
analogously 2.5) follows directly from Lemma 2.9.

The general case u ∈ S ′(R)⊗̂D(Rq, E)′ follows by applying the preceding
arguments to (1 ⊗ χ)u ∈ S(R1+q, E)′ for each χ ∈ C∞

c (Rq). �
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Proof of Theorem 2.8. Assume S+ satisfies the static asymptotic spectral con-
dition. Lemma 2.10 implies directly

WF(S±) ⊂ K± ∪K0. (2.6)

Because S+ and S− are bi-solutions for D, WF(S±) ∩K0 = ∅, as can be seen
from (2.2). Consequently, (2.6) is equivalent to WF(S±) ⊂ K±. In particular,
WF(S+) and WF(S−) are disjoint. Together with S − S0 = S+ + S−, this
entails precisely

WF(S±) = WF(S − S0) ∩K± = WF(S) ∩K±.

�
Let us point out the following conclusion from the proof of Theorem 2.8:

given S and a candidate for a positive-frequency solution S+, it suffices to
prove (2.6) to check that the Hadamard condition is satisfied. It is a consid-
erable simplification, as the exact form of the whole wave front set of S and
S+ is not important in doing so. Such kind of argument can be rewritten for
the non-static and curved case as well, a similar idea was in fact used in [54]
in the context of wave front sets of Hilbert-space valued distributions.

3. Spin-1/2 Case

The Dirac equation in d spatial dimensions, static external potentials Aμ(x) =
(V (x), Ai(x)) (i = 1, . . . , d) and variable mass m = m(x) is given by:

(i∂t + h(x))ψ(t,x) = 0,

where h(x) : C∞(R1,d,Cr) → C∞(R1,d,Cr) is the differential operator

h(x) = −i
d∑

i=1

αi(∂i − iAi(x)) − V (x) −m(x)β,

and αi, β are the r× r Dirac matrices with r = 2l, l being the greatest integer
that is not greater than n/2. We assume Ai(x), V (x), m(x) are real valued
smooth functions.

A well-known theorem states, that the Cauchy problem associated to the
Dirac equation is solved by the causal propagator [18].

Theorem 3.1. Let ϑ ∈ C∞
c (Rd,Cr). There exists a unique ψ ∈ C∞

sc (R1,d,Cr)
that solves

{
(i∂t + h(x))ψ(t,x) = 0,
ψ(0,x) = ϑ(x).

It is given by

ψ(t,x) =
∫

Rd

S(t,x,x′)γ0ϑ(x′)dx′,

where γ0 := −iβ and S ∈ D(R1+2d, L(E))′ is the causal propagator for
(i∂t + h(x)).
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3.1. Dirac Hamiltonian

The standard approach to quantizing the non-interacting Dirac field in static
external potentials relies on the possibility of assigning to h(x) a self-adjoint
extension h, called the Dirac Hamiltonian, in the Hilbert space L2(Rd,Cr). A
treatment for basic classes of potentials, including a description of the domain
of h and its spectral properties, can be found for instance in [55] for the phys-
ically most important case d = 3. In this paper we are interested in the case
of smooth potentials exclusively and under such assumption, as pointed out
for instance in [50], essential self-adjointness of h(x) follows directly from the
general arguments given in [14]. Let us stress that no decay at infinity of the
potentials is required.

Theorem 3.2. If Ai, V,m ∈ C∞(Rd,R), then the operator h(x) acting on
C∞

c (Rd,Cr) is essentially self-adjoint in the Hilbert space L2(Rd,Cr).

We denote h the closure of h(x).
In particular, the differential expression h0

(x), corresponding by defini-
tion to V = Ai = 0 and m(x) ≡ m, is essentially self-adjoint on C∞

c (Rd,Cr).
Its closure (the free Dirac Hamiltonian), denoted h0, has domain D(h0) =
H1(Rd,Cr) and spectrum σ (h0) = (−∞,−m] ∪ [m,∞).

3.2. Positive and Negative Frequency Solutions

The family of unitaries eith solves uniquely the Cauchy problem for the Dirac
equation, and hence is directly related to the causal propagator, according to
Theorem 3.1. Formally, the causal propagator S(t,x,x′) is for fixed t the inte-
gral kernel of −γ0eith. Propagation of positive-frequency solutions is described
by the family −γ0eith1+(h), where 1+(h) is the projection on the positive part
of the spectrum of h. The integral kernel S+(t,x,x′) of eith1+(h) is what one
calls the positive-frequency solution S+. We make these statements precise
and prove, that S+ defined this way satisfies the static asymptotic spectral
condition.

We proceed by defining the multi-linear functionals

〈S, f ⊗ ū⊗ v〉 := −(u|γ0(F−1f)(h)v),

〈S+, f ⊗ ū⊗ v〉 := −(u|γ0(F−1f)(h)1+(h)v)
(3.1)

for f ∈ S(R), u, v ∈ S(Rd,Cr). Here, 1+(·) := 1[0,∞)(·) is the characteristic
function of the closed half-line, F−1f is the inverse Fourier transform of f and
(F−1f)(h), 1+(h) are defined by function calculus. The complex conjugate ū
of u is needed for linearity.

Proposition 3.3. S and S+ are well-defined distributions in S(R1+2d, L(Cr))′.
Furthermore,
1. S and S+ are bi-solutions for (i∂t + h(x)), i.e.

(i∂t + h(x))S(t,x,x′) = 0, (i∂t + h(x))S+(t,x,x′) = 0, (3.2)

(−i∂t + h(x′))S(t,x,x′) = 0, (−i∂t + h(x′))S+(t,x,x′) = 0. (3.3)
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2. S is the causal propagator for (i∂t + h(x)),
3. S+ satisfies the static asymptotic spectral condition. More precisely

supp(F0S±) ⊂ [0,±∞) × R
d+d, (3.4)

where S− := S − S+.
4. S+ satisfies the following positivity condition

− (τ∗S+)(F ⊗ γ0F ) ≥ 0 ∀F ∈ C∞
c (R1,d,Cr), (3.5)

where τ is the map defined by (2.1).

Proof. By the Schwartz kernel theorem, (3.1) defines uniquely a tempered dis-
tribution if S+ : S(R)⊗S(Rd,Cr)⊗S(Rd,Cr) → C is continuous. By Schwarz
inequality and function calculus of self-adjoint operators (for Borel functions),
we have

|〈S+, f ⊗ ū⊗ v〉| = |(u|γ0(F−1f)1+(h)v)| ≤ ‖u‖‖γ0(F−1f)(h)1+(h)‖ ‖v‖
≤ ‖u‖ ‖γ0(F−1f)1+‖∞ ‖v‖ ≤ ‖u‖ ‖γ0F−1f‖∞ ‖v‖ .

Convergence of f to 0 in S(R) implies F−1f → 0 in S(R) and consequently
‖F−1f‖∞ → 0. Furthermore, convergence of u (resp. v) to 0 in S(Rd,Cr)
implies ‖u‖ → 0 (resp. ‖v‖ → 0), hence S+ is continuous. The reasoning for S
is analogous.
1. To prove (3.2) it suffices to check the equality on simple tensors. For

arbitrary f ∈ C∞
c (R), u, v ∈ C∞

c (Rd,Cr), we have

〈h(x)S, f ⊗ ū⊗ v〉 = −(u|γ0(F−1f)(h)hv),

〈∂tS, f ⊗ ū⊗ v〉 = −(u|γ0(F−1∂tf)(h)v) = i(u|γ0(F−1f)(h)hv),

where we used v ∈ C∞
c (Rd,Cr) ⊂ D(h). The remaining assertions follow

in an analogous way.
2. This is a straightforward consequence of Theorem 3.1, as S solves the

same Cauchy problem as the causal propagator.
3. For any ϕ ∈ C∞

c (R) with suppϕ ⊂ (0,−∞), we have

〈F0S,ϕ⊗ ū⊗ v〉 = −(u|γ0ϕ(h)1+(h)v) = −(u|γ0(ϕ · 1+)(h)v) = 0

and analogously for S−, hence (3.4).
4. For each f ∈ C∞

c (R), u ∈ C∞
c (Rd,Cr),

〈−γ0τ∗S+, f ⊗ u⊗ f ⊗ u〉 = (u|(F−1fF−1f)(h)1+(h)u) ≥ 0.

�

Corollary 3.4. The distribution S+ ∈ D(R1+2d, L(E))′ satisfies the Hadamard
condition.

The construction of the Hadamard state associated to S+, the role of the
positivity condition (3.5) and second quantization are described in detail in
[26], see also [11] for a general overview on quasi-free states.
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4. Spin-0 Case

4.1. Two-Component Klein–Gordon Equation

Consider the Klein–Gordon equation with static potentials and variable mass
[

(∂t − iV (x))2 −
d∑

i=1

(∂i − iAi(x))2 +m(x)2
]

φ(t,x) = 0. (4.1)

We will write formally ε2(x) := −∑d
i=1 (∂i − iAi(x))2 + m(x)2 as a differen-

tial operator acting on C∞
c (Rd) (and do not assign any meaning to ε for a

moment).
It can be rewritten in a Hamilton form as

(i∂t + b(x))
(
v1(t,x)
v2(t,x)

)

=
(
v1(t,x)
v2(t,x)

)

, b(x) :=
(
V (x) 1
ε2(x) V (x)

)

. (4.2)

The one-component and two-component Klein–Gordon equations are
related as follows:

(i∂t + b(x))
(
v1(t,x)
v2(t,x)

)

= 0 ⇐⇒
{[

(∂t − iV (x))2 + ε2(x)

]
φ(t,x) = 0,

v1 = φ, v2(t,x) = −(i∂t + V (x))φ(t,x).

(4.3)

The differential operator (i∂t + b(x)) is prenormally hyperbolic (in the
sense of Definition 2.3). Indeed, defining

b′(x) : =
(−V (x) 1

ε2(x) −V (x)

)

,

(−i∂t + b′)(i∂t + b) = (i∂t + b)(−i∂t + b′)

=
(

(∂t − iV )2 + ε2 0
0 (∂t − iV )2 + ε2

)

.

An analogue of Theorem 3.1 is available, where γ0 gets now replaced by

σ0 := i
(

0 1
1 0

)

.

Theorem 4.1. Let ϑ ∈ C∞
c (Rd,C2). There exists a unique φ ∈ C∞

sc (R1,d,C2)
that solves

{
(i∂t + b(x))φ(t,x) = 0,
φ(0,x) = ϑ(x).

It is given by

φ(t,x) =
∫

Rd

S(t,x,x′)σ0ϑ(x′)dx′,

where S ∈ D(R1+2d, L(C2))′ is the causal propagator for i∂t + b(x).
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4.2. Klein–Gordon Hamiltonian: Introduction

We proceed with putting the Klein–Gordon equation in a functional analysis
framework. To this end, we need to define ε as an operator in the Hilbert space
L2 := L2(Rd). Throughout this section, we denote the scalar product in L2 by
(·|·). We make the following assumption:

Assumption 4.2. The operator ε2(x) =−∑d
i=1 (∂i−iAi(x))2+m(x)2 on C∞

c (Rd)
admits a self-adjoint extension denoted ε2, s.t. ε2 ≥ μ2 · 1 for some μ > 0.

For non-vanishing Ai, the operator ε is called a magnetic Schrödinger
operator. An extensive study of magnetic Schrödinger operators can be found
in [3], criterions for Assumption 4.2 are discussed in [42] and refer implicitly
to the behaviour of Ai at infinity. Later on we will be interested only in poten-
tials satisfying some additional conditions and we postpone the discussion of
examples until then.

Note that for (let’s say) vanishing Ai, Assumption 4.2 excludes the mass-
less casem = 0. The massless case shows indeed peculiarities, which are already
visible in the Dirac case. As we will be mainly interested in problems of a whole
different kind, caused by the presence of the electric potential, we do not dis-
cuss such massless problems and restrict ourselves to referring the interested
reader to the work of Jonas [31], in which technical results for Klein–Gordon
type equations displaying both kind of difficulties are described.

One would wish to associate to b(x) a self-adjoint operator in a Hilbert
space in analogy to the Dirac Hamiltonian h. This turns out not to be possible.
There is a natural symmetric form [·|·] for which b is formally symmetric, i.e.
[·|b·] = [b · |·] on suitable elements. It is given by

[u|v] := (u1|v2) + (u2|v1) (4.4)

for u = (u1, u2), v = (v1, v2) ∈ L2 ⊕ L2. In the literature, it is sometimes
called the charge inner product. Clearly, it is not positive definite and cannot
be used directly to define a Hilbert space. One has to refer to Krein spaces
techniques. We will see in Sect. 4.3.4, how one can build a suitable Krein
space equipped with the indefinite inner product [·|·] and assign to b a Krein
self-adjoint operator on it.

Even though (4.4) is not positive definite, it is still possible to give a
Hilbert space framework for the Klein–Gordon equation if the potential V is
not ‘too large’. This can be understood in the following way. One introduces
the differential operator

a :=
(

0 1
ε2 − V 2 2V

)

=
(

1 0
V 1

)(
V 1
ε2 V

)(
1 0

−V 1

)

=
(

1 0
V 1

)

b

(
1 0

−V 1

)

. (4.5)

In a formal sense, a is symmetric with respect to the sesquilinear form [·|·]en
(the so-called energy inner product), defined as

[u|v]en := (u1|(ε2 − V 2)v1) + (u2|v2)
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for suitable elements u = (u1, u2), v = (v1, v2) ∈ L2 ⊕ L2. This sesquilinear
form is positive if ε2−V 2 is a well-defined positive operator. In such a case, one
uses [·|·]en to define a Hilbert space and assign to a a self-adjoint operator. One
can prove that the Krein self-adjoint operator b is similar to the self-adjoint
operator a and therefore has the same spectral properties. Thus, one often
prefers to work with a instead of b.

The quantity [u|u]en is interpreted as energy conserved by the evolution
t �→ eita and the violation of positivity, occurring when ε2 −V 2 is not positive,
is usually called the Klein paradox (see [22,25,38] for disambiguation, histor-
ical remarks and detailed discussion on the physics of the Klein paradox). In
such case it is necessary to work in a Krein space formalism. Under reason-
able restrictions on V , one can assign to a a Krein self-adjoint operator and
one can prove that it has the same spectrum as the corresponding b operator.
The properties of the operator a, defined on a suitable Krein space, have been
investigated by several authors (there is a particularly vast literature on the
positive definite case), see [36] and references therein.

In this paper, we choose to work with the operator b and the inner prod-
uct [·|·] only, motivated by the fact that it is closely related to the sesquilinear
form used to quantize the space of solutions to the Klein–Gordon equation.
Another argument in favor of b is that (i∂t + b(x)) is easily seen to be prenor-
mally hyperbolic and the analogies to the Dirac Hamiltonian are much more
transparent.

The idea of using the operator b for quantization in external potentials
dates back to the 1950s [23], but we are not aware of a fully rigorous imple-
mentation up to date. Many enlightening remarks on quantization in Krein
spaces are contained in [51]. For applications of Krein spaces in interaction
theory, see [2] and references therein.

4.3. Operators in Krein Spaces

Let us briefly introduce the notions from Krein space theory needed later on.
The standard references are [10,35]. We follow closely the exposition of this
subject contained in [24] and focus on the class of so called definitizable Krein
self-adjoint operators, which admits a ‘smooth function calculus’ and ‘Borel
function calculus’ with particularly nice properties.

Definition 4.3. A Krein space (K, [·|·]) consists of a Hilbert space K with its
scalar product (·|·)K and an inner product [·|·] on K (that is a hermitian sesqui-
linear form), such that [·|·] = (·|g·)K for some invertible, self-adjoint g ∈ B(K).

Unless stated otherwise, any topological statements refer to the Hilbert
space topology of K. In the literature, a more general definition of Krein spaces
is often used, which requires K to be merely a hilbertizable vector space, but
this lies away from our case of interest.
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Let A : D(A) → K be a densely defined operator. The Krein adjoint A†

of A in (K, [·|·]) is defined by

D(A†) := {u ∈ K : [u|A·] is continuous on D(A)},
[u,Av] = [A†u, v] ∀u ∈ D(A†), v ∈ D(A).

A densely defined operator A is called Krein self-adjoint, respectively Krein
unitary if A† = A, resp. A†A = AA† = 1. It is called Krein positive (resp.
Krein negative) if [u|Au] ≥ 0 (resp. ≤ 0) for all u ∈ K.

Proposition 4.4. If P ∈ B(K) is a Krein self-adjoint and Krein positive projec-
tion, then [u|Pu] > 0 for all nonzero u ∈ K. Furthermore, RanP with scalar
product inherited from K is a Hilbert space, and its topology coincides with the
topology induced by [u|u]1/2.

Definition 4.5. A Krein self-adjoint operator A is called definitizable if it has
non-empty resolvent set and there exists a real polynomial p(λ) s.t. p(A) is
Krein positive. Such a polynomial is called definitizing for A.

Proposition 4.6. Let A be a definitizable operator. Then σ(A)\R consists of
finitely many pairs of isolated eigenvalues {λi, λ̄i}.
4.3.1. Smooth Functional Calculus for Definitizable Operators. We quote the
adaptation of the function calculus of Davies [15] to definitizable operators
in Krein spaces proposed by Gérard [24], omitting the explicit constructions
and proofs. This function calculus is available for classes of smooth functions
decreasing fast enough at ∞:

For ρ ∈ R, denote Sρ(R) the space of functions f such that

∀α∈N ∃Cα≥0 : |f (α)(λ)| ≤ Cα〈λ〉ρ−α

equipped with the semi-norms ‖f‖m := supλ∈R,α≤m |〈λ〉−ρ+αf (α)(λ)|. Here,
f (α) denotes the derivative of order α of f and 〈λ〉 := (1 + λ2)1/2. Note that
S(R) ⊂ Sρ(R) for all ρ ∈ R.

For f ∈ Sρ(R), define

f̃(x+ iy) :=

(
N∑

r=0

f (r)(x)
(iy)r

r!

)

χ

(
y

δ〈x〉
)

, (4.6)

where N is some fixed integer, δ > 0 and χ ∈ C∞
c (R) with χ(s) ≡ 1 for |s| ≤ 1

2
and χ(s) ≡ 0 for |s| ≥ 1. A function defined this way is called an analytic
extension of f . It satisfies

f̃ |R = f,

∣
∣
∣
∣
∣
∂f̃(z)
∂z

∣
∣
∣
∣
∣
≤ C〈Re z〉ρ−N−1|Im z|N .

Proposition 4.7 ([24], B.8). Let A be a definitizable operator. Let ρ < −1, f ∈
Sρ(R) and let f̃ be given by (4.6). Then for sufficiently high N the integral

f(A) :=
1

2πi

∫

C

∂f̃

∂z
(A− z)−1dz ∧ dz.
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is norm convergent in B(K) and does not depend on the choice of χ, δ, N .
The map Sρ(R) � f �→ f(A) ∈ B(K) is a homomorphism of algebras and

f(A)† = f(A), (4.7)

‖f(A)‖ ≤ CA‖f‖m, for some m ∈ N. (4.8)

It is shown in [24, B.10], that there is an operator-valued measure μ such
that

f(A) =
∫

R

f(t)dμ(t) (4.9)

for each f ∈ C∞
c (R) with suppf ∩ σcr(A) = ∅. A construction of such measure

μ is described in [35], we will use this particular choice without giving a more
explicit characterization.

4.3.2. Spectral Function for Definitizable Operators. A Borel function calcu-
lus is also available up to some restrictions [24,35]. There, a crucial role is
played by the set of critical points σcr(A), defined as follows.

Definition 4.8. Let A be a definitizable operator. The set

σcr(A) :=
⋂

p

p−1({0}) ∩ σ(A) ∩ R (4.10)

is called the set of critical points of A, where the intersection is taken over all
definitizing polynomials for A.

Definition 4.9. A finite union of intervals J ⊂ R is called admissible for A if
its boundary ∂J contains no critical point of A.

Let J ⊂ R be admissible for A. We denote by BA(J ) the ∗-algebra of
bounded Borel functions on J which are locally constant near σcr(A).

Theorem 4.10 ([24], B.11). Let J ⊂ R be a bounded admissible finite union
of intervals for a definitizable operator A and let g ∈ BA(J ). Decompose
g = g0 +

∑
i gi, where g0 ∈ BA(J ) is such that supp g0 ∩ σcr(A) = ∅ and

gi ∈ C∞
c (R) (i = 1, . . . , N ; N < ∞). Set

g(A) :=
N∑

i=1

gi(A) +
∫

R

g0(t)dμ(t),

where gi(A) is defined via smooth functional calculus. Then g(A) is a well-
defined operator in B(K) and the definition does not depend on the decompo-
sition of g. The map

BA(J ) � g �→ g(A) ∈ B(K)

is a homomorphism of ∗-algebras such that g(A)† = g(A).

We use the Borel functional introduced in Theorem 4.10 to define spec-
tral projections 1J (A), where J is bounded admissible and we recall that
1J ∈ BA(J ) denotes the characteristic function of J . Equivalently, one could
use the construction of spectral projections described in [35]. To discuss gen-
eralizations for larger classes of intervals, one makes the following definition.
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Definition 4.11. Let A be a definitizable operator. A point c ∈ σcr(A) is said to
be a regular critical point of A if 1[c−ε,c+ε](A) converges in the strong operator
topology as ε ↘ 0. Otherwise, it is said to be a singular critical point. We say
that a definitizable operator A is regular at infinity if 1[−Λ,Λ](A) converges in
the strong operator topology as Λ → ∞.

Let us note that in the literature, a convention where ∞ is by definition
in σcr(A) is often employed and one speaks of ∞ being a ‘regular critical point’
instead. It is natural to adopt the following notation:

Definition 4.12. Let A be a definitizable operator and let J be a finite sum of
bounded intervals such that no singular critical points of A intersects ∂J . We
define

1J (A) := s− lim
ε↘0

1J (ε)(A), J (ε) := J \
( ⋃

c∈σcr(A)

[c− ε, c+ ε]
)

. (4.11)

Definition 4.13. Let A be a definitizable operator, regular at infinity, and let J
be a finite sum of intervals such that no singular critical points of A intersects
∂J . If J is not bounded, we define

1J (A) := s− lim
Λ→∞

1J ∩[−Λ,Λ](A). (4.12)

Proposition 4.14. Let A be a definitizable operator and let J ,J ′ be finite sums
of bounded intervals such that no singular critical points of A intersects ∂J .
Let f ∈ Sρ(R) with ρ > −1 and let f(A) be defined by smooth function calculus.
Then:
1. 1J (A)† = 1J (A),
2. 1J (A)1J ′(A) = 1J ∩J ′(A),
3. if suppf ∩ J = ∅ then f(A)1J (A) = 0.
4. if suppf ⊂ J then f(A)1J (A) = f(A).

Moreover, if A is regular at infinity, this extends to unbounded J as well.

Proof. Properties 1.–2. are direct consequences of Theorem 4.10. To prove
properties 3.–4. it suffices to consider f ∈ C∞

c (R) (C∞
c (R) being dense in

Sρ(R)). For such functions the smooth and Borel function calculus coincide
and using the latter we get

f(A) = (f · 1suppf )(A) = f(A)1suppf (A)

and one uses property 2. to get 3.–4. The last assertion follows, as properties
1.–4. are preserved by the strong operator limit (4.12). �
4.3.3. One-Parameter Groups Generated by Definitizable Operators. The fol-
lowing property of definitizable operators which are regular at infinity is essen-
tial for our purpose (see [37] for a more complete discussion).

Proposition 4.15. Let A be definitizable and regular at infinity. Then, it is
the generator of a strongly continuous one-parameter group of Krein unitaries
{Tt}t∈R, i.e.

Ax = lim
t→0

Ttx− x

it
∀x ∈ D(A).
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Let us now investigate the relation between Tt and operators defined by
function calculi for A. In doing so, one has to take into account that Tt contains
all the information about eventual complex eigenvalues of A, but this not the
case for an operator f(A) defined by smooth function calculus. We illustrate
this in Proposition 4.16.

First, let us introduce the projection corresponding to the non-real part
of the spectrum of A. Let E(λ,A) denote the Riesz projection relative to an
isolated eigenvalue λ ∈ σ(A). Define

1C\R(A) :=
∑

λ∈σ(A),Im λ>0

E(λ,A) + E(λ,A). (4.13)

A standard result from Krein space theory says that [u|1C\R(A)u] = 0 for each
u ∈ K.

Proposition 4.16. Let A be definitizable and regular at infinity. Denote
{Tt}t∈R the one-parameter group it generates. For any f ∈ C∞

c (R), one has

1√
2π

∫

R

dt f(t)Tt(1 − 1C\R(A)) = (F−1f)(A), (4.14)

where (F−1f)(A) is defined via smooth functional calculus.

Proof. By [1, Theorem 3.12.2], Tt is the inverse Laplace transform of the resol-
vent of iA, i.e.

Tt = s− lim
k→∞

1
2πi

k∫

−k

e(μ+is)t(A+ iμ− s)−1ds (4.15)

for sufficiently large μ > 0. By writing the same equality for T (−t) and taking
the Krein adjoint, we get also

Tt = s− lim
k→∞

(−1)
2πi

k∫

−k

e(−μ+is)t(A− iμ− s)−1ds. (4.16)

Using (4.16) we get that
∫ ∞
0

dt f(t)Tt equals

(−1)
2πi

∞∫

0

dt

∞∫

−∞
dsf(t)e(−μ+is)t(A− iμ− s)−1.

By the Riesz–Dunford calculus,

(A− w)−1(1C\R(A) − 1) =
1

2πi

∫

γ(w)

(w − z)−1(A− z)−1dz,

where γ(w) := γ0(w) ∪ γ1 ∪ γ1, γ0(w) is a circle in rs (A) which surrounds
w ∈ C and γ1 is a circle in rs (A)∩{z : Im z > 0} which surrounds σ (A)∩{z :
Im z > 0}. Hence
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∞∫

0

dt f(t)Tt(1 − 1C\R(A))

=
−1

(2πi)2

∞∫

0

dt

∞∫

−∞
ds

∫

γ(s+iμ)

dzf(t)e(−μ+is)t(s+ iμ− z)−1(A− z)−1

=
−1

(2πi)2

∞∫

0

dt

∞+iμ∫

−∞+iμ

dw
∫

γ(w)

dz f(t)eiwt(w − z)−1(A− z)−1.

We claim that the contour γ(w) can be replaced by η(ε) := (R + iε) ∪ (R − iε)
(clockwise), where ε > 0 is arbitrarily small. To this end we have to prove that
the respective integral over two half-circles (in the z variables) with center
iε, −iε and radius R vanishes as R → ∞. Indeed, we can use that ‖(A−z)−1‖
is O(|Im z|−1) for large |Im z| (as follows from the Hille–Yosida theorem) to
show that the integral over z is O(R−1 lnR). We have

−1
(2πi)2

∞∫

0

dt

∞+iμ∫

−∞+iμ

dw
∫

η(ε)

dz f(t)eiwt(w − z)−1(A− z)−1

=
(−1)
2πi

∞∫

0

dt
∫

η(ε)

dz f(t)eizt(A− z)−1.

Analogously, using (4.15) instead of (4.16), one finds

0∫

−∞
dt f(t)Tt(1 − 1C\R(A))

=
(−1)
2πi

0∫

−∞
dt

∫

η(ε)

dz f(t)eizt(A− z)−1.

Thus, denoting g := F−1f ,

1√
2π

∫

R

dt f(t)Tt(1 − 1C\R(A)) =
(−1)
2πi

∫

η(ε)

g(z)(A− z)−1.

On the other hand, to evaluate the RHS of (4.14), let us note that g is
an entire function and it consequently admits an almost analytic extension of
the form

g̃(z) := g(z)χ0(z), χ0(x+ iy) := χ (y/(δ〈x〉)) ,
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where χ and δ are as in 4.6. Therefore,

g(A) =
1

2πi

∫

C

∂g̃

∂z̄
(z)(A− z)−1dz ∧ dz̄ = lim

ε↘0

1
2πi

∫

Cε

∂g̃

∂z̄
(z)(A− z)−1dz ∧ dz̄

= lim
ε↘0

1
2πi

∫

∂Cε

g̃(z)(A− z)−1dz = lim
ε↘0

1
2πi

∫

∂Cε

g(z)χ0(z)(A− z)−1dz,

where Cε := suppχ0 ∩ {z : |Im z| > ε}. The last integral does not depend on
ε, hence

g(A) =
1

2πi

∫

η̄(ε)

g(z)(A− z)−1 =
(−1)
2πi

∫

η(ε)

g(z)(A− z)−1.

�

4.3.4. Definition and Properties of b. In this section, we gather results
obtained by Langer et al. [37], basing on earlier works (among others) by
Veselić [57] and Jonas [31].

Following Jonas, they introduce the Hilbert space

K := ε−
1
2L2 ⊕ ε

1
2L2.

More explicitly, ε−1/2L2 is by definition the space D(ε
1
2 ) with scalar prod-

uct (ε1/2 · |ε1/2·) and ε1/2L2 is the completion of L2 = L2(Rd) with respect
to the norm induced by the scalar product (ε−1/2 · |ε−1/2·). Let us note that
C∞

c := C∞
c (Rd,C2) is dense in K, as can be easily checked. The indefinite

inner product [·|·] on K is rigorously defined by

[u|v] := (ε1/2u1|ε−1/2v2) + (ε−1/2u2|ε1/2v1) = (u|gv)K

for u = (u1, u2), v = (v1, v2) ∈ K, where g =
(

0 ε−1

ε 0

)

. It follows that

(K, [·|·]) is a Krein space. For u, v ∈ C∞
c , we have [u|v] = −i(u|σ0v) where

σ0 = i
(

0 1
1 0

)

and (·|·) is here the scalar product in L2(Rd,C2).

Then, they consider (not necessarily smooth) potentials V satisfying the
following assumptions:

Assumption 4.17. V and ε are such that
(i) D(ε) ⊂ D(V ),
(ii) c = V ε−1 can be decomposed as c = c0 + c1 with ‖c0‖ < 1 and c1

compact,
(iii) 1 /∈ σ p(c∗c).

The operator b in the Hilbert space K is defined by

D(b) :=
{(

v1
v2

)

∈ ε−
1
2L2 ⊕ ε

1
2L2 : v2 ∈ L2, V v1 + v2 ∈ ε−

1
2L2, ε2v1 + V v2 ∈ ε

1
2L2

}
,
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b

(
v1
v2

)

:=
(
V v1 + v2
ε2v1 + V v2

)

. (4.17)

To the differential expression ε2(x) − V 2(x) one associates an operator in
ε−1L2 given by

ε2 − V 2 := ε(1 − c∗c)ε, D(ε2 − V 2) := {w ∈ ε−1L2 : (1 − c∗c)w ∈ ε−1L2}.

Note that part (iii) of Assumption 4.2 is equivalent to 0 /∈ σ p(b). This
simplifies much the discussion presented later on, but is not an essential
assumption and the case 0 ∈ σ p(b) can be treated along the same lines as
the analogous problem in the Dirac case. The following theorem summarizes
the spectral properties of the operator b.

Theorem 4.18 ([37]). Suppose that Assumption 4.17 is satisfied for c = c0 + c1
with ‖c0‖ < 1 and c1 compact, and let b be the operator defined by 4.17. Then:

• The operator b is definitizable in the Krein space (K, [·|·]) and is regular
at ∞. Consequently, b is the generator of a strongly continuous group of
Krein unitaries {Tt}t∈R.

• The essential spectrum σess(b) is real and σ ess(b) ∩ (−α, α) = ∅, where
α := (1 − ‖c0‖)μ.

• Assume J ⊂ [0,∞) (resp. J ⊂ (−∞, 0]) is admissible for b. Then, 1J (b)
is Krein positive (resp. Krein negative) if J ∩ σcr(b) = ∅.

• If c1 = 0, then b has no complex eigenvalues.
• If ε2 − V 2 is strictly positive, then σ(b) ⊂ R and σcr(b) = ∅.

In the case m > 0 and Ai(x) ≡ 0 for i = 1, . . . , d, the operator ε equals
(−Δ +m2)1/2 with domain W 1

2 (Rd). Then, one can give explicit examples of
classes of potentials V satisfying the assumptions of Theorem 4.18.

Proposition 4.19 ([37]). Let d ≥ 3. Parts (i)–(ii) of Assumptions 4.2 and
4.17 are satisfied if ε = (−Δ + m2)1/2 with m > 0 and V = V0 + V1, where
V1 ∈ Lp(Rd) with d ≤ p < ∞, and one of the following holds:

1. V0 ∈ L∞(Rd) with ‖V0‖∞ < m;
2. V0(x) = γ/|x|, x ∈ R

d \ {0}, with γ ∈ R s.t. |γ| < (d− 2)/2.

4.4. Hadamard Distributions

We introduce the causal propagator S and candidates for positive frequency
solutions in analogy to the Dirac case. We allow more freedom in defining the
latter in order to treat the overcritical case at once, where it is not clear from
the beginning what should be the replacement for 1(0,∞)(h).

As previously, Assumptions 4.2 and 4.17 are assumed, the operator b is
defined by (4.17) and {Tt}r∈R is the one-parameter group generated by b. We
define multilinear functionals
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〈S, f ⊗ ū⊗ v〉 := −i
∫

R

f(t)[u|Ttv]dt, (4.18)

〈SJ
+ , f ⊗ ū⊗ v〉 := −i

√
2π [u|(F−1f)(b)1J (b)v], (4.19)

〈SJ
− , f ⊗ ū⊗ v〉 := −i

√
2π [u|(F−1f)(b)(1 − 1J (b))v], (4.20)

for f ∈ C∞
c (R), u, v ∈ C∞

c (Rd,C2). Here, (F−1f)(b) is defined by smooth
function calculus, J ⊂ R is a given admissible union of intervals for b and
1J (b) is given by Definition 4.13.

Note that the distributions SJ
± are defined using the smooth function

calculus for b, which kills any modes with non-real eigenfrequency. This is
the reason why they display no exponential behaviour for large times and are
consequently tempered in the time variable, as stated in the next proposition.

Proposition 4.20. The functionals SJ
+ , S

J
− extend to distributions in

S ′(R)⊗̂D(R2d, L(C2))′.

Proof. By the Schwartz kernel theorem, (4.19) defines uniquely a distribution
in the space S ′(R)⊗̂D(R2d, L(C2))′ if SJ

+ : S(R)⊗C∞
c (Rd,C2)⊗C∞

c (Rd,C2) →
C is continuous. By Schwarz inequality and smooth function calculus, we have
for some m ∈ N

1√
2π

|〈SJ
+ , f ⊗ ū⊗ v〉| = |[u|(F−1f)(b)1J (b)v]| = |(u|g(F−1f)(b)1J (b)v)K|

≤ ‖u‖K‖(F−1f)(b)‖‖g1J (b)‖‖v‖K ≤ Cb‖u‖K‖F−1f‖m‖g1J (b)‖‖v‖K.

Convergence of f to 0 in S(R) implies F−1f → 0 in S(R) and consequently
‖F−1f‖m → 0. Furthermore, convergence of u (resp. v) to 0 in C∞

c (Rd,C2)
implies ‖u‖K → 0 (resp. ‖v‖K). Indeed, one has the inequality

‖u‖2
K = ‖ε1/2u1‖2 + ‖ε−1/2u2‖2 ≤ ‖ε−3/2‖2‖ε2u1‖2 + ‖ε−1/2‖2‖u2‖2.

Now, u1, u2 → 0 in C∞
c (Rd) implies ε2u1, u2 → 0 in C∞

c (Rd) and consequently
‖ε2u1‖, ‖u2‖ → 0.

The reasoning for SJ
− is analogous. �

Proposition 4.21. Let J ⊂ R be admissible for the operator b [as previously,
Assumptions 4.2 and 4.17 are assumed and the operator b is defined by (4.17)].
1. S, SJ

+ and SJ
− are bi-solutions for i∂t + b(x),

2. S is the causal propagator for i∂t + b(x),
3. If [α,∞) ⊂ J ⊂ [α′,∞) for some α, α′ ∈ R, then SJ

+ satisfies the static
asymptotic spectral condition (cf. Definition 2.7).

Claims 1.–2. are proved as in the spin-0 case.

Proof of 3., Proposition 4.21. By Proposition 4.16, we have

S = SJ
+ + SJ

− + S0,

where S0 restricted to t = const is proportional to the integral kernel of

T (t)1C\R(b) =
∑

λ∈σ(A),Im λ>0

eiλt(E(λ,A) + E(λ,A)).
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We see that S0 is smooth in the time variable, i.e. WF(S0) ⊂ R
1+2d × ({0} ×

R
2d). It is also a bi-solution for the pre-normally hyperbolic differential oper-

ator i∂t + b(x), hence WF(S0) = ∅, that is S0 is smooth.
By Proposition 4.20, both distributions SJ

± are tempered in the time
direction, so it remains to prove the assertion on the supports of their Fourier
transforms. Note that the distributions, F0S

J
+ , F0S

J
− are uniquely determined

by their value on simple tensors:

〈F0S
J
+ , f ⊗ ū⊗ v〉 = −i

√
2π[u|f(b)1J (b)v], (4.21)

〈F0S
J
− , f ⊗ ū⊗ v〉 = −i

√
2π[u|f(b)(1 − 1J (b))v]. (4.22)

By 3. of Proposition 4.14, (4.21) vanishes for each f ∈ S(R) with suppf ∩
σcr(b) = ∅ and suppf ∩ J = ∅. By 4. of Proposition 4.14, (4.22) vanishes for
each f ∈ S(R) with suppf ∩ σcr(b) = ∅ and suppf ⊂ J . Therefore,

supp(F0S
J
+ ) ⊂ (σcr(b) ∪ J ) × R

2d, supp(F0S
J
− ) ⊂ (σcr(b) ∪ (R\J )) × R

2d,

which by boundedness of the set σcr(b) finishes the proof. �
A positivity condition can be formulated in analogy to the Dirac case.

Proposition 4.22. Let J ⊂ R be admissible for the operator b. The following
are equivalent:
1. J ⊂ [0,∞) and J ∩ σcr(b) = ∅,
2. 1J (b) is Krein positive,
3. SJ

+ satisfies the following positivity condition

− (τ∗SJ
+ )(F ⊗ iF ) ≥ 0 ∀F ∈ C∞

c (R1,d,C2). (4.23)

Proof. Equivalence (1 ⇔2 ) is part of Theorem 4.18. For (2 ⇔3 ), let us remark
that (4.23) is equivalent to

〈−iτ∗SJ
+ , f ⊗ u⊗ f ⊗ u〉 =

√
2π[u|(F−1f)(F−1f)(b)1J (b)u]

=
√

2π[(F−1f)(b)u|1J (b)(F−1f)(b)u] ≥ 0 (4.24)

for all f ∈ C∞
c (Rd), u ∈ C∞

c = C∞
c (Rd,C2). Implication (2 ⇒3 ) follows.

To show that (4.24) implies Krein positivity of 1J (b), fix f s.t. the opera-
tor O := (F−1f)(b) is invertible, so that (4.24) means [·|1J (b)·] ≥ 0 on the
set OC∞

c . By density of C∞
c in K, OC∞

c is dense in K and the inequality
[·|1J (b)·] ≥ 0 extends to K. �

As we explain later on in 4.5, the positivity condition (4.23) allows to
associate a quasi-free state ωJ to SJ

+ . Therefore, we have found Hadamard
states parametrized by admissible sets J ⊂ [0,∞). One can easily extend
those results to the more general case when ∂J contains no critical singular
points of b.

We raise now the question of existence of a distinguished Hadamard state.
If there are no critical points, the choice J := [0,∞) gives rise to the ground
state known from other constructions. However, if critical points are present,
such choice of J would lead to violation of positivity and SJ

+ would not define
a state in the usual sense. If one insists on preserving positivity, one has to
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remove all critical points from the interval and consequently J := [0,∞)\σcr(b)
is the obvious naive choice. If no singular critical points are present, 1J (b) and
S+

J are indeed well defined and give rise to a Hadamard state. On the other
hand, if there is a singular critical point c ∈ [0,∞), 1J (b) is ill-defined and one
needs to consider a smaller set J (ε) := J \[c − ε, c + ε]. Although ε > 0 can
be chosen arbitrarily small, none of the sets J (ε) is distinguished. To clarify
what can be a ‘distinguished state’ in this context, we propose the following
definition.

Definition 4.23. We say that the Hadamard state associated to SJ
+ is maxi-

mal, if J is maximal in the directed set {J ⊂ [0,∞) : ∂J contains no singular
critical point of b} with relation ‘⊂’.

Corollary 4.24. Our construction of Hadamard states can be summed up as
follows in terms of maximal states.
1. If ε2 − V 2 is positive:

There exists a maximal Hadamard state. It corresponds to the choice J =
[0,∞) and this is precisely the ground state known from other construc-
tions.

2. If ε2−V 2 is not positive and [0,∞) contains no singular critical point of b:
There exists a maximal Hadamard state and it corresponds to the choice
J := [0,∞)\σcr(b).

3. If ε2−V 2 is not positive, and [0,∞) contains a singular critical point of b:
There exists no maximal Hadamard state.

Sufficient conditions for the second case to hold are given in [24]. This
includes for instance the case when Ai ≡ 0, V ∈ C∞

c (Rd) ∩ Ld(Rd) and m <

‖V ‖∞ <
√

2m. Unfortunately, we do not know of explicit sufficient conditions
for the third case to hold.

4.5. Quantization

For sake of completeness, we explain the connection between SJ
+ , associated

quasi-free states and quantization. Most of the basic facts on bosonic quasi-free
states is proved in [4], we also use some terminology from [16,56]. Although
our treatment is not standard, as it is based on the operator b, it fits into the
general framework of bosonic quasi-free states (especially in the mathematical
setup originally proposed in [4]) and recovers known conditions for existence
of ground states, see e.g. [12].

Let V be a real vector space and σ(·, ·) an antisymmetric form on V
(not necessarily non-degenerate). Denote A(V, σ) the corresponding Weyl CCR
algebra (see e.g. [9,16] for an exact definition), formally generated by elements
of the form W (v) for v ∈ V, with W (·) satisfying

W (v)∗ = W (−v), W (u)W (v) = e−iσ(u,v)/2W (u+ v), u, v ∈ V.
Definition 4.25. A state ω on A(V, σ) is called a bosonic quasi-free state if there
exists a symmetric form μ(·, ·) on V such that

ω(W (v)) = e− 1
2 μ(v,v), v ∈ V. (4.25)
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Definition 4.26. Let (V, σ) consists of a real vector space V and an antisym-
metric form on V. A real symmetric form μ(·, ·) is said to be dominating for
(V, σ) if

μ(u, u) ≥ 0, |σ(u, v)|2 ≤ 4μ(u, u)μ(v, v), u, v ∈ V. (4.26)

Proposition 4.27. If μ is a dominating symmetric form for (V, σ), there exists
a unique bosonic quasi-free state ω on A(V, σ) satisfying (4.25).

The spaces ε±1/2L2 have natural complex structures. Denote Re ε±1/2L2

the real Hilbert space consisting of real elements of ε±1/2L2 (i.e. all f ∈ ε±1/2L2

s.t. f̄ = f) and Im ε±1/2L2 the real Hilbert space consisting of imaginary ele-
ments of ε±1/2L2 (i.e. all f ∈ ε±1/2L2 s.t. f̄ = −f). Define KR := Re ε−1/2L2⊕
Im ε1/2L2 as a real Hilbert space.

Given J ⊂ [0,∞) such that ∂J contains no singular critical point of b,
we define

σ(u, v) := −i [u|v], u, v ∈ K (4.27)

μ(u, v) := σ(u, jv)/2, u, v ∈ K, (4.28)

where j := i(2 · 1J (b) − 1). We have

[u|1J (b)v] = μ(u, v) +
i
2
σ(u, v), u, v ∈ K. (4.29)

Let us check that σ(·, ·) is anti-symmetric on KR. Indeed,

iσ(u, v) = (ε1/2u1|ε−1/2v2) + (ε−1/2u2|ε1/2v1)

= (ε1/2v1|ε−1/2u2) + (ε−1/2v2|ε1/2u1)

= −(ε1/2v1|ε−1/2u2) − (ε−1/2v2|ε1/2u1) = −iσ(v, u)

for u, v ∈ KR. Together with (4.28–4.29) this implies:

Proposition 4.28. Let J ⊂ R be s.t. ∂J contains no singular critical point of
b and let μ, σ be given by (4.27–4.28). Then, μ is dominating for (KR, σ) iff
J ⊂ [0,∞) and J ∩ σcr(b) = ∅.
Proof. We have shown that σ is anti-symmetric on KR, hence σ(u, u) = 0 for
u ∈ KR and (4.29) gives μ(u, u) = [u|1J (b)u] for u ∈ KR. For non-negativ-
ity of μ, it suffices to read off conditions for non-negativity of [·|1J (b)·] given
in Proposition 4.22. It follows from (4.29) using standard arguments (see e.g.
[4, Lemma 3.3]) that μ is dominating. �

We define ωJ to be the state obtained via Proposition 4.27 for the dom-
inating anti-symmetric form μ for (KR, σ).

If σcr(b) = ∅ and J = [0,∞), then the sesquilinear form (μC+ i
2σC)(·, ·) =

[·|1J (b)·] on K is non-degenerate. The (Fock) GNS representation for the state
ω[0,∞) can be then obtained as follows. The one-particle Hilbert space, denoted
Z, is obtained by complexifying KR using the complex structure j. The bosonic
Fock space Γ(Z) is obtained in the usual way from the one-particle space via
symmetrized tensor products. The operator b on KR promotes to an operator
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bZ on the complex Hilbert space Z, which is unitarily equivalent to −ibj =
b sgn(b) treated as an operator on K.

Definition 4.29. Let R � t �→ αt be a strongly continuous one-parameter group
of automorphisms of a given C∗-algebra A. A state ω on a A is said to be an
αt-ground state if ω is αt-invariant and the generator of αt in the GNS repre-
sentation for ω is a positive operator.

Under the assumption σcr(b) = ∅, the state ω[0,∞) is invariant under the
one-parameter group of automorphisms denoted t �→ αt, induced from the
symplectic transformation t �→ eitb on (KR, σ). It follows from standard facts
on second quantization that positivity of the generator of αt represented in
Γ(Z) is equivalent to positivity of bZ . But this is equivalent to positivity of
b sgn(b) on K.

Corollary 4.30. ωJ is an αt-ground state if ε2 −V 2 is positive and J = [0,∞).

If σcr(b) 
= ∅, then the sesquilinear form (μC + i
2σC)(·, ·) = [·|1J (b)·] is

degenerate,1 i.e. there exists u ∈ K s.t. (μC + i
2σC)(u, u) = 0. The linear span

of such vectors is finite dimensional. In the language of [4], the corresponding
GNS representation is not Fock. In terms used in [59], ωJ is not a ‘regular’
state.

5. Discussion and Outlook

We have found and characterized basic Hadamard states for the Dirac and
Klein–Gordon equation in Minkowski space, coupled to static smooth exter-
nal potentials. This includes in particular ground states, confirming this way
expectations coming from QFT on curved backgrounds and phrased in [39].

The Hadamard states found in the overcritical Klein–Gordon case are
quite peculiar and one may argue they are not very natural, even the ‘distin-
guished ones’. In the construction, we needed to remove some points from what
is understood as ‘positive frequency part of the spectrum’. One can also argue
that the physical meaning of those states is unclear, as they are constructed
in a framework where back-reaction effects are neglected, which cannot be
expected to be a meaningful approximation for arbitrarily strong potentials.
It is even possible that back-reaction rules out the possibility of creating over-
critical potentials at all. Therefore, one should describe this regime in a theory
which includes back-reaction effects by treating ‘semi-classically’ the quantum
current operator and plugging it into the (Maxwell) equations governing the
external electromagnetic field. Then, overcritical Hadamard states and, if they
exist, their non-static generalizations, may possibly play the role of unstable
solutions of the semi-classical Maxwell equations.

We did not discuss non-smooth potentials, the formalism of wave front
sets not being well adapted to such case. In particular, our proof of Theorem 2.8
breaks down if the smoothness condition is dropped. It is highly probable that

1 We thank J. Zahn for drawing our attention on this.
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under suitable assumptions, states satisfying the static asymptotic spectral
condition (Definition 2.7) can still be constructed in analogy to the smooth
case, even for overcritical potentials. On the other hand, one can expect only
some weaker property than the Hadamard condition to hold. The analysis
of potentials with singularities is motivated both by possible applications in
bound state QED [39] and simplified models of quantum fields on black hole
spacetimes (see e.g. [5] for a superradiant example).

Naturally, one is also interested in time dependent potentials, especially
in view of the applications proposed in the introduction. The lack of transla-
tion invariance in the time coordinate makes the problem more difficult, there
is also in general no obvious candidate for a distinguished Hadamard state.
Still, under some restrictive conditions on the non-static potentials, a second
quantized theory is known [46] and one can ask if any Hadamard states can be
associated. Time-zero restrictions of such states should correspond to time-zero
restrictions of the states we investigated in the static case.
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Appendix A. Wave Front Sets: Basic Definitions and Properties

In this Appendix, we gather basic definitions and results from microlocal analy-
sis. The main reference is [28], for wave front sets of ‘vectorbundle’ distributions
we use also [53].

Let u ∈ D′(Rp). A neighbourhood Γ of ko ∈ R
p in R

p\{0} is called conic
if k ∈ Γ implies λk ∈ Γ for all λ > 0. One says that (xo, ko) ∈ R

p × (Rp\{0})
is a regular directed point of u if there exists ϕ ∈ C∞

c (Rp) with ϕ(xo) 
= 0 such
that

∀n ∈ N ∃Cn ∈ R s.t. |F(ϕu)(k)| ≤ Cn(1 + |k|)−n

for all k in a conic neighbourhood of ko. Here, F(ϕu) denotes the Fourier
transform of the compactly supported distribution ϕu.

Definition A.1. The wave front set WF(u) is defined as the complement in
R

p × (Rp\{0}) of the set of all regular directed points of u ∈ D′(Rp).
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Now let E be a vector space of dimension m. Any distribution u ∈
D(Rp, E)′ can be represented as a column of distributions ui ∈ D′(Rp) with m
entries.

Definition A.2. The wave front set WF(u) of u ∈ D(Rp, E)′ is defined as

WF(u) =
⋃

i

WF(ui).

From the definition it is obvious that WF(u+ v) ⊂ WF(u) ∪ WF(v) for
u, v ∈ D(Rp, E)′.

Proposition A.3. Let u ∈ D(Rp, E)′. Then, u ∈ C∞(Rp, E) if and only if
WF(u) = ∅.
Theorem A.4. Let P : C∞(Rp, E) → C∞(Rp, E) be a differential operator with
smooth coefficients and denote p(x, k) ∈ C∞(R2p, L(E)) its principal symbol.
Then for any u ∈ D(Rp, L(E))′ one has

WF(Pu) ⊂ WF(u) ⊂ WF(Pu) ∪ p−1({0}).
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