166 research outputs found

    Chronic Kidney Disease and Nonalcoholic Fatty Liver Disease—Is There a Link?

    Get PDF
    Research in recent years has led to the recognition of the importance of nonalcoholic fatty liver disease (NAFLD) and its relationship to the metabolic syndrome (MS). This has led to a growing interest in the potential prognostic value of NAFLD for adverse cardiovascular disease (CVD) outcome. On the other hand, searching for new risk factors for chronic kidney disease (CKD) development and progression is very important. Growing evidence suggests that the MS is an important factor in the pathogenesis of CKD. The best confirmation of this pathogenic link is hypertensive and diabetic nephropathy as the main causes of CKD. Furthermore, the possible link between NAFLD and CKD has also attracted research interest and recent data suggest an association between these two conditions. These findings have fuelled concerns that NAFLD may be a new and added risk factor for the development and progression of CKD. NAFLD and CKD share some important cardiometabolic risk factors and possible common pathophysiological mechanisms, and both are linked to an increased risk of incident CVD events. Therefore, common factors underlying the pathogenesis of NAFLD and CKD may be insulin resistance, oxidative stress, activation of rennin-angiotensin system, and inappropriate secretion of inflammatory cytokines by steatotic and inflamed liver

    Influence of palaeoweathering on trace metal concentrations and environmental proxies in black shales

    Get PDF
    The mineralogical and chemical compositions of Lower Carboniferous (Tournaisian) marine black shale from the Kowala quarry, the Holy Cross Mountains, Poland, were investigated. This study focuses on disturbances in palaeoenvironmental proxies caused by palaeoweathering, which progressively changed the major and trace element abundances. Palaeomagnetic investigations reveal that the Devonian – Carboniferous succession was weathered during the Permian-Triassic by the infiltration of oxidizing fluids related to karstification following post-Variscan exhumation. The weathering process led to vermiculitization of chlorite, partial dissolution of calcite and replacement of pyrite by hematite and goethite. Moreover, the concentrations of some trace metals, including Co, Cu, Pb, Mo, Ni, As and U, significantly decreased. Consequently, some elemental abundance ratios that are used as environmental proxies, including U/Th, Ni/Co and V/Cr, were altered. Elements that are bound to iron sulphides (e.g., Mo) appear to be especially prone to mobilization by even a lightly weathered black shale. The documented weathering, including changes in elemental concentrations, can potentially create misinterpretations of the original palaeoenvironmental conditions. In addition, the palaeoweathering of the studied samples appears to have substantially changed the carbon, oxygen, nitrogen and molybdenum stable isotope values. The nitrogen and molybdenum stable isotope ratios, in particular, appear to be most sensitive to the effects of weathering and therefore are good indicators of (palaeo)weathering processes. The major cause of these changes is the decay of organic matter and pyrite. For the organic carbon stable isotopes ratios, the main factor that controlls this process appears to be the preferential degradation of labile organic matter. A combination of the total organic carbon (TOC), total sulphur (TS) content, Mo concentration and stable isotope compositions seems to be the most useful for identify (palaeo)weathering. Our results suggest that reductions in TS and Mo in tandem with diminished Mo stable isotope values in the absence of obvious changes to the TOC content provide the most compelling evidence of (palaeo)weathering

    The Alvarez impact theory of mass extinction; limits to its applicability and the „great expectations syndrome”

    Get PDF
    For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous-Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force-fitting of data and interpretations ("great expectations syndrome". The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause-effect scenario for the Frasnian-Famennian, Permian-Triassic, and Triassic-Jurassic (and the Eifelian-Givetian and Paleocene-Eocene as well) global events include mostly item-1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F-F extinction is potentially seen in the context of item-2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item-3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi-impact lag-time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end-Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate-active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Ankyrin is the major oxidised protein in erythrocyte membranes from end-stage renal disease patients on chronic haemodialysis and oxidation is decreased by dialysis and vitamin C supplementation

    Get PDF
    Chronically haemodialysed end-stage renal disease patients are at high risk of morbidity arising from complications of dialysis, the underlying pathology that has led to renal disease and the complex pathology of chronic kidney disease. Anaemia is commonplace and its origins are multifactorial, involving reduced renal erythropoietin production, accumulation of uremic toxins and an increase in erythrocyte fragility. Oxidative damage is a common risk factor in renal disease and its co-morbidities and is known to cause erythrocyte fragility. Therefore, we have investigated the hypothesis that specific erythrocyte membrane proteins are more oxidised in end-stage renal disease patients and that vitamin C supplementation can ameliorate membrane protein oxidation. Eleven patients and 15 control subjects were recruited to the study. Patients were supplemented with 2 × 500 mg vitamin C per day for 4 weeks. Erythrocyte membrane proteins were prepared pre- and post-vitamin C supplementation for determination of protein oxidation. Total protein carbonyls were reduced by vitamin C supplementation but not by dialysis when investigated by enzyme linked immunosorbent assay. Using a western blot to detect oxidised proteins, one protein band, later identified as containing ankyrin, was found to be oxidised in patients but not controls and was reduced significantly by 60% in all patients after dialysis and by 20% after vitamin C treatment pre-dialysis. Ankyrin oxidation analysis may be useful in a stratified medicines approach as a possible marker to identify requirements for intervention in dialysis patients

    Thermosensitivity of the Saccharomyces cerevisiae gpp1gpp2 double deletion strain can be reduced by overexpression of genes involved in cell wall maintenance

    Get PDF
    A Saccharomyces cerevisiae strain in which the GPP1 and GPP2 genes, both encoding glycerol-3-phosphate phosphatase isoforms, are deleted, displays both osmo- and thermosensitive (ts) phenotypes. We isolated genes involved in cell wall maintenance as multicopy suppressors of the gpp1gpp2 ts phenotype. We found that the gpp1gpp2 strain is hypersensitive to cell wall stress such as treatment with β-1,3-glucanase containing cocktail Zymolyase and chitin-binding dye Calcofluor-white (CFW). Sensitivity to Zymolyase was rescued by overexpression of SSD1, while CFW sensitivity was rescued by SSD1, FLO8 and WSC3-genes isolated as multicopy suppressors of the gpp1gpp2 ts phenotype. Some of the isolated suppressor genes (SSD1, FLO8) also rescued the lytic phenotype of slt2 deletion strain. Additionally, the sensitivity to CFW was reduced when the cells were supplied with glycerol. Both growth on glycerol-based medium and overexpression of SSD1, FLO8 or WSC3 had additive suppressing effect on CFW sensitivity of the gpp1gpp2 mutant strain. We also confirmed that the internal glycerol level changed in cells exposed to cell wall perturbation. © 2007 Springer-Verlag

    Portrait of Candida albicans Adherence Regulators

    Get PDF
    Cell-substrate adherence is a fundamental property of microorganisms that enables them to exist in biofilms. Our study focuses on adherence of the fungal pathogen Candida albicans to one substrate, silicone, that is relevant to device-associated infection. We conducted a mutant screen with a quantitative flow-cell assay to identify thirty transcription factors that are required for adherence. We then combined nanoString gene expression profiling with functional analysis to elucidate relationships among these transcription factors, with two major goals: to extend our understanding of transcription factors previously known to govern adherence or biofilm formation, and to gain insight into the many transcription factors we identified that were relatively uncharacterized, particularly in the context of adherence or cell surface biogenesis. With regard to the first goal, we have discovered a role for biofilm regulator Bcr1 in adherence, and found that biofilm regulator Ace2 is a major functional target of chromatin remodeling factor Snf5. In addition, Bcr1 and Ace2 share several target genes, pointing to a new connection between them. With regard to the second goal, our findings reveal existence of a large regulatory network that connects eleven adherence regulators, the zinc-response regulator Zap1, and approximately one quarter of the predicted cell surface protein genes in this organism. This limited yet sensitive glimpse of mutant gene expression changes had thus defined one of the broadest cell surface regulatory networks in C. albicans

    Disparity Changes in 370 Ma Devonian Fossils: The Signature of Ecological Dynamics?

    Get PDF
    Early periods in Earth's history have seen a progressive increase in complexity of the ecosystems, but also dramatic crises decimating the biosphere. Such patterns are usually considered as large-scale changes among supra-specific groups, including morphological novelties, radiation, and extinctions. Nevertheless, in the same time, each species evolved by the way of micro-evolutionary processes, extended over millions of years into the evolution of lineages. How these two evolutionary scales interacted is a challenging issue because this requires bridging a gap between scales of observation and processes. The present study aims at transferring a typical macro-evolutionary approach, namely disparity analysis, to the study of fine-scale evolutionary variations in order to decipher what processes actually drove the dynamics of diversity at a micro-evolutionary level. The Late Frasnian to Late Famennian period was selected because it is punctuated by two major macro-evolutionary crises, as well as a progressive diversification of marine ecosystem. Disparity was estimated through this period on conodonts, tooth-like fossil remains of small eel-like predators that were part of the nektonic fauna. The study was focused on the emblematic genus of the period, Palmatolepis. Strikingly, both crises affected an already impoverished Palmatolepis disparity, increasing risks of random extinction. The major disparity signal rather emerged as a cycle of increase and decrease in disparity during the inter-crises period. The diversification shortly followed the first crisis and might correspond to an opportunistic occupation of empty ecological niche. The subsequent oriented shrinking in the morphospace occupation suggests that the ecological space available to Palmatolepis decreased through time, due to a combination of factors: deteriorating climate, expansion of competitors and predators. Disparity changes of Palmatolepis thus reflect changes in the structure of the ecological space itself, which was prone to evolve during this ancient period where modern ecosystems were progressively shaped

    BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression

    Get PDF
    For DNA replication to occur, chromatin must be remodeled. Yet, we know very little about which proteins alter nucleosome occupancy at origins and replication forks and for what aspects of replication they are required. Here, we demonstrate that the BRG1 catalytic subunit of mammalian SWI/SNF-related complexes co-localizes with origin recognition complexes, GINS complexes, and proliferating cell nuclear antigen at sites of DNA replication on extended chromatin fibers. The specific pattern of BRG1 occupancy suggests it does not participate in origin selection but is involved in the firing of origins and the process of replication elongation. This latter function is confirmed by the fact that Brg1 mutant mouse embryos and RNAi knockdown cells exhibit a 50% reduction in replication fork progression rates, which is associated with decreased cell proliferation. This novel function of BRG1 is consistent with its requirement during embryogenesis and its role as a tumor suppressor to maintain genome stability and prevent cancer
    corecore