17 research outputs found

    Modelling considerations for the degradation of cellulosic paper

    No full text
    International audienc

    Relationship between soil moisture and vegetation in the Kairouan plain region of Tunisia using low spatial resolution satellite data

    No full text
    The present paper proposes an empirical approach for the modeling of vegetation development, using moisture measurements only. The study is based simply on the use of two databases: one containing soil moisture products derived from ERS scatterometer data over the period 1991-2006 and the other containing normalized difference vegetation indices (NDVI) derived from advanced very high resolution radiometer over the period 1991-2000. The study is applied over the Kairouan plain, the central semiarid region of Tunisia (North Africa). Soil moisture products were first validated on the basis of comparisons with Global Soil Wetness Project, Phase 2 Data, outputs and rainfall events. The soil moisture distribution during the rainy period between October and May is described and is found to be correlated with the vegetation dynamics estimated using the NDVI products. Finally, a semiempirical model is proposed, based on satellite moisture and NDVI products, which allows the NDVI value to be estimated for a period of 1 month during the rainy season as a function of the moisture profile estimations obtained during the previous months. This approach could prove very useful and provide a simple tool for the modeling of vegetation dynamics during rainy seasons in semiarid regions

    The impact of paper constituents on the efficiency of mechanical strengthening by polyaminoalkylalkoxysilanes

    No full text
    International audienceThe aim of the research was to evaluate the influence of certain components of paper such as lignin and papermaking additives (fillers and sizing) on the efficiency of a recently proposed treatment for simultaneous deacidification and mechanical strengthening with polyaminosiloxane copolymer networks. Mixed mechanical and chemical pulp papers containing various additives were treated with aminoalkylalkoxysilanes (AAAS) by immersion or by spray. Upon treatment, the deposited alkaline reserve varied from 0.34 to 1.14 mol kg−1. For all the papers, copolymers formed from binary mixtures of a di- and a tri-functional AAAS provided the best improvement in the mechanical properties, i.e. in the tensile strength and the folding endurance, indicating an increase in the interfiber bonding energy and in the paper flexibility and plasticity, respectively. It was found that fillers had no influence while sizing hampered the efficiency of the treatment. The presence of mechanical pulp was shown to have a significant impact on the effect of the treatments as well by increasing the tensile resistance more than the folding endurance, indicating an increase in the paper rigidity. This observation was attributed to the response of lignin to the treatment

    D. Die einzelnen romanischen Sprachen und Literaturen.

    No full text

    Somatic Alterations in Prostate Cancer Progression

    No full text

    8th IAS Conference on HIV Pathogenesis, Treatment and Prevention (IAS 2015).

    No full text

    Perspectives in Pediatric Pathology, Chapter 21. Testicular Pathology in Heritable Metabolic Disease

    No full text
    corecore