122 research outputs found

    Prediction of hydrodynamics and chemistry of confined turbulent methane-air frames in a two concentric tube combustor

    Get PDF
    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a two-concentric-tube combustor is presented. A numerical procedure for the solution of the governing differential equations is described and models for chemical-equilibrium and chemical-kinetics calculations are presented. The chemical-equilibrium model is used to characterize the hydrocarbon reactions. The chemical-kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor considered consists of two coaxial ducts. Concentric streams of gaseous fuel and air enter the inlet duct at one end; the flow then reverses and flows out through the outer duct. Two sample cases with specified inlet and boundary conditions are considered and the results are discussed

    Effect of width and temperature of a vertical parallel plate channel on the transition of the developing thermal boundary layer

    Get PDF
    Numerical simulations are performed to study the transition of the development of the thermal boundary layer of air along an isothermal heated plate in a large channel which is bounded by an adiabatic plate. In particular, the aim is to investigate the effects of the channel width (b) on the transition of the flow under various plate temperatures. Three different RANS based turbulent k–ε models namely standard, RNG and Realizable with an enhanced wall function are employed in the simulations. The channel width was varied from 0.04 m to 0.45 m and the numerical results of the maximum values of the flow velocity, turbulent kinetic energy were recorded along the vertical axis to examine the critical distance of the developing flow. The results show that the transition delays when the width is increased from 0.04 m to 0.08 m and particularly, the critical distance at b = 0.08 m reaches its maximum with the Grashof number of 2.8 × 1010. However, the critical distance drops when b is increased further from 0.08 m to 0.45 m, indicating an early transition of the flow. The transition remains unaffected by the adiabatic plate when b is greater than 0.45 m. Comparisons of selected numerical results are made with available experimental data of turbulent flow and a satisfied agreement is received

    The clinical relevance of PCL index on the reconstruction of anterior cruciate ligament with hamstring tendon autograft

    Get PDF
    The posterior cruciate ligament index (PCL index) has been reported as a diagnostic and prognostic marker for anterior cruciate ligament (ACL) reconstruction. The clinical relevance of PCL index on the reconstruction of ACL with hamstring tendon autograft has not been described in the literature. The objective of this study is to evaluate the importance of the PCL index as a marker of anatomic reconstruction and of functional improvement of patients undergoing ACL reconstruction with HT autograft. Twenty-four patients were submitted to ACL reconstruction with HT autograft. The PCL index was assessed by magnetic resonance imaging before and after surgery. The functional evaluation was performed through the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form© and Knee Society Knee Scoring System© (IKS). Patients presented a significant positive variation of the PCL index, IKDC and IKS scores. There is no significant correlation between PCL index variation and IKDC and IKS scores (p > 0.05). Unlike other studies reporting a relationship between the PCL index, control of rotational kinematics, and functional improvement in patients undergoing ACL reconstruction with bone-patellar tendon-bone autograft, this study does not demonstrate this association. There is evidence in this study to show that the PCL index may be used as an anatomic reconstructive marker of ACL but not to predict the clinical outcome in this type of reconstruction.(undefined

    A new design for friction stir spot joining of Al alloys and carbon fibre reinforced composites

    Get PDF
    Friction stir spot welding (FSSW) has been recently developed to join dissimilar materials. However, the traditional requirement for a rotating tool consists of a pin and shoulder in FSSW leads to a complex joining process and unpredictable defects. In this study, a new static-shoulder design in FSSW was proposed and developed to join Al alloys to carbon fiber-reinforced polymer (CFRP) composites. The main joining parameters, including pin rotational speed, pin feed rate and pin plunge depth, were varied to investigate their effects on the joining temperature, materials interaction and the strength of joints. The pin rotational speed had the largest influence on the joining temperature. Lap shear tensile testing was conducted to evaluate the performance of the joints. The joints exhibited the ultimate lap shear force from 230 to 260 N. A brittle fracture occurred with the displacement-at-fracture load of 0.35-0.41 mm. Cross-sectional images revealed the creation of undulations on the surface of Al alloys in the joining zone. The undulations created a macro-mechanical interlocking bonding between the materials, which determined the performance of the joints. For a flat pin, by increasing the plunge depth from 1.25 to 1.30 mm, the undulation size increased from 0.21 to 0.26 mm, which can enhance the macro-mechanical interlocking bonding between Al alloys and CFRP and accordingly increased the ultimate shear force of the joints from 230 to 241 N. Use of a fluted pin significantly influenced the flow of the plasticized Al alloy which created pronounced undulations and large Al alloy spikes of 0.46 mm. These features seemed to establish an efficient macro-mechanical interlocking bonding, which resulted in a noticeable improvement in the performance of the joint. For a plunge depth of 1.30 mm, the ultimate shear force increased to 261 N using the fluted pin

    Population balance modelling of polydispersed particles in reactive flows

    Full text link

    Performance analysis of content matching intrusion detection systems

    No full text
    A central question in the design and evaluation of a Network Intrusion Detection System (nIDS) is whether it is possible to define a practical, accurate and meaningful performance evaluation methodology. In this direction, we examine how nIDS performance interacts with experiment parameters such as traffic characteristics, nIDS rulesets, string matching algorithms and processor architecture. Our results indicate that nIDS performance is sensitive to the both packet and ruleset content, yet this sensitivity seems to be bounded, allowing us to craft and experiment with synthetic traces and rulesets. Our experiments also show that experiments on a single trace and processor architecture are likely to be misleading; effective nIDS evaluation therefore requires careful consideration of a fairly extensive set of scenarios

    Honey@home: A New Approach to Large-Scale Threat Monitoring

    No full text
    Honeypots have been shown to be very useful for accurately detecting attacks, including zero-day threats, at a reasonable cost and without false positives. However, there are two pressing problems with existing approaches. The first problem is that timely detection requires deployment of honeypots in a large fraction of the network address space, many organizations cannot afford. The second problem is that attackers are evolving, and it has been shown that it is not difficult for them to identify honeypots and develop blacklists to avoid them when launching an attack. In response to these problems, we propose a new architecture that enables large-scale deployment at low cost, while making it harder for attackers to maintain accurate blacklists. Th
    • …
    corecore